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Introduction

“The word is the shadow of the deed.”

Democritus

In a famous essay on meaning, H. Paul Grice distinguished between

natural and non-naturalmeaning.Natural meaning depends on associa-

tions arising from natural processes. I say that all meaning is natural

meaning.1 This is in the tradition of Democritus, Aristotle, Adam

Smith, and David Hume, Darwin, Bertrand Russell, and Ludwig

Wittgenstein, David Lewis, and Ruth Millikan. It is opposed to

Platonism, Cartesianism, and various stripes of geistphilosophy.

Can the meaning of words arise spontaneously, by chance? We

begin by attacking the question (at a high level of abstraction) with a

combination of modern tools. The first is the theory of signaling

games, in whose use we follow the philosopher David Lewis. The

second is the mathematical theory of information, where we replace

rather ill-defined questions about the meaning of words with clearer

questions about the information carried by signals. This uses ideas

deriving ultimately from the theory of Claude Shannon, but elabo-

rated by Solomon Kullback in such a way as to provide a natural

definition of the quantityof information in a signal.One of the original

contributions of this book is a natural definition of the informational

content in a signal that generalizes philosophers’ notion of a proposition

as a set of possible worlds. The third consists in the Darwinian idea

of evolution by differential reproduction and natural variation. In

particular, we use models of replicator dynamics. The fourth consists

of theories of trial and error learning. The evolutionary question is

1 Grice is pointing to a real distinction, but in my view it is the distinction between

conventional and non-conventional meaning. Conventional meaning is a variety of natural

meaning. Natural dynamic processes—evolution and learning—create conventions.



re-posed as a learning question. Can signals spontaneously acquire

information through naive learning in repeated interaction? The

story, even at this simplified abstract level, is much richer than you

might expect. At a more concrete level, there is a vast and growing

scientific literature on signaling in and between cells, neurology,

animal signaling, and human signaling, thatwe cannot hope to address

here. An account of the biochemistry of signaling in one bacterium

Myxococcus xanthus, if it were fully known, would take a book of its

own—and I would not be the person to write it. I will stick to the

abstract, game-theoretic level. At that level of analysis there is one

basic point that is clear: Democritus was right.

Is this the end of our story? No, it is the beginning. Signaling

systems grow. That means that signaling games themselves evolve.

They are not fixed, closed interaction structures but rather open

structures capable of change. We need to study mechanisms that

can account for such change. There are two stages of this process

that are addressed in this book. One is the invention of new signals.

The invention of the original signals needed to get signaling off the

ground is a case in point, but there is also the case of invention to

get out of information bottlenecks. This book introduces a new

account—a new mathematical model—of learning with invention.

Invention completely alters the dynamics of learning in signaling

situations. The second stage consists in the juxtaposition of simple

signals to produce complex signals. Complex signals are a great

advance in the evolution of signaling systems. Humans are, of

course, very good at this. But, contrary to some claims, neither

syntax nor complex signals are the exclusive preserve of humans.

It is best then, to think of these not as the results of some evolu-

tionary miracle, but rather as the natural product of some gradual

process.

Signaling transmits information, but it does far more than this.

To see this we need to move further than the simple signaling

games with one sender and one receiver. Signals operate in net-

works of senders and receivers at all levels of life. Information is

transmitted, but it is also processed in various ways. Among other
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things, that is how we think—just signals running around a very

complicated signaling network. Very simple signaling systems

should be able to learn to implement very simple information

processing tasks by very simple means, and indeed they can.

Signaling networks also give a richer view of a dual aspect of

signals. Signals inform action, and signaling networks co-ordinate

action. Signaling is a key ingredient in the evolution of teamwork.

You can think of the flow of information in a corporation, or a

government, or a publisher. But you can also think of teamwork

in animals, in cooperative hunting, cooperative breeding, coopera-

tive defense against predators, and cooperative construction of

living spaces. These kinds of teamwork are found not only in

mammals, birds, and the insect societies, but also more recently in

micro-organisms. Teamwork is found in bacteria (Myxococcus),

amoeboids (cellular slime molds), and algae (Volvox). These organ-

isms are models of the transition from unicellular organisms

to multicellularity. And the internal workings of multicellular or-

ganisms are themselves marvels of teamwork. The coordination of

the parts in each of these cases is effected by signals. Of course,

in any complex organization, information transmission and proces-

sing and coordination of action may not be entirely separate.

Rather, they might be thought of as different aspects of the flow

of information.

Signaling may evolve for various purposes in networks with

different structures. We look only at simple structures that can

be thought of as building blocks for larger, more complex net-

works. But even at the level of such simple network structures,

we have to think of the network topology itself evolving. The

last chapter of this book gives a brief introduction to this field,

and introduces novel low-rationality payoff-based dynamics that

learns to network just as well as higher-rationality best-response

dynamics.

What is the relation of signaling theory to philosophy? It is

epistemology, because it deals with selection, transmission, and

processing of information. It is philosophy of (proto)-language. It
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addresses cooperation and collective action—issues that usually

reside in social and political philosophy. It does not quite fit into

any of these categories, and gives each a somewhat novel slant.

That’s good, because the theory of signaling is full of fascinating

unexplored questions.
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1

Signals

“Two savages, who had never been taught to speak, but had

been brought up remote from the societies of men, would

naturally begin to form that language by which they would

endeavor to make their mutual wants intelligible to each

other . . . ”

Adam Smith, Considerations Concerning the First

Formation of Languages

What is the origin of signaling systems? Adam Smith suggests that

there is nothing mysterious about it. Two perfectly ordinary people

who did not have a signaling system would naturally invent one. In

the first century bc, Vitruvius says much the same thing:

In that time of men when utterance of a sound was purely individual,

from daily habits they fixed on articulate words just as they happened to

come; then, from indicating by name things in common use, the result

was in this chance way they began to talk, and thus originated conversa-

tion with one another.

Vitruvius is echoing the view of the great atomist Democritus, who

lived four centuries earlier. Democritus held that signals were

conventional and that they arose by chance.1 Can it be true? If so,

how can it be true?

1 Another echo is to be found in Diodorus of Sicily:

“The sounds they made had no sense and were confused; but gradually they articulated their

expressions, and by establishing symbols among themselves for every sort of object they

came to express themselves on all matters in a way intelligible to one another. Such groups



The leading alternative view was that some signals, at least

originally, had their meaning “by nature”—that is, that there was

an innate signaling system.2 At the time this may have seemed like

an acceptable explanation, but after Darwin, we must say that it is

no explanation at all. Bare postulation of an evolutionary miracle is

no more explanatory than postulation of a miraculous invention.

Either way, some work needs to be done.

Whatever one thinks of human signals, it must be acknowledged

that information is transmitted by signaling systems at all levels of

biological organization. Monkeys,3 birds,4 bees, and even bacteria5

have signaling systems. Multicellular organisms are only possible

because internal signals coordinate the actions of their constituents.

We will survey some of the signaling systems in nature in Chapter 2.

Some of these signaling systems are innate in the strongest sense.

Some are not.

We now have not one but two questions: How can interacting

individuals spontaneously learn to signal? How can species spontaneously

evolve signaling systems?

I would like to indicate how we can bring contemporary theo-

retical tools to bear on these questions.

came into existence throughout the inhabited world, and not all men had the same

language, since each group organized their expressions as chance had it.”

Translation from Barnes 2001: 221.
See also Verlinski 2005 and Barnes 2001: 223. Proclus says:

“Both Pythagoras and Epicurus were of Cratylus’ opinion. Democritus and Aristotle were

of Hermongenes” (5,2526).

and:

“Democritus who said that names are conventional formulated this principle in four

dialectical proofs . . .Therefore names are arbitrary, not natural.” (6,207,1)

Translation from Duvick 2007.

2 I am, of necessity, drastically oversimplifying the ancient debate here. See van den Berg

2008.
3 Cheney and Seyfarth 1990.
4 See Charrier and Sturdy 2005 for an avian signaling system with syntactical rules, and

Marler 1999 for shadings of “innateness” in sparrow songs.

5 See the review article of Taga and Bassler 2003.
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Sender-receiver

In 1969 David Lewis framed the problem in a clean and simple way

by introducing sender-receiver games.6 There are two players, the

sender and the receiver. Nature chooses a state at random and the

sender observes the state chosen. The sender then sends a signal to

the receiver, who cannot observe the state directly but does observe

the signal. The receiver then chooses an act, the outcome of which

affects them both, with the payoff depending on the state. Both

have pure common interest—they get the same payoff—and there

is exactly one “correct” act for each state. In the correct act-state

combination they both get positive payoff; otherwise payoff is zero.

The simplest case is one where there are the same number of states,

acts, and signals. This is where we will begin.

Signals are not endowed with any intrinsic meaning. If they are

to acquire meaning, the players must somehow find their way to

information transmission. Lewis confines his analysis to equilibria of

the game, although more generally we would want to investigate

information transmission out of equilibrium as well. When trans-

mission is perfect, so that the act always matches the state and the

payoff is optimal, Lewis calls the equilibrium a signaling system. It is a

virtue of Lewis’s formulation that we do not have to endow the

sender and receiver with a pre-existing mental language in order to

define a signaling system.

That is not to say that mental language is precluded. The state

that the sender observes might be “What I want to communicate”

and the receiver’s act might be concluding “Oh, she intended to

communicate that.” Accounts framed in terms of mental language,7

or ideas or intentions can fit perfectly well within sender-receiver

games. But the framework also accommodates signaling where no

plausible account of mental life is available.

6 Russell 1921 is a precursor to Lewis. In an important paper, Crawford and Sobel 1982
analyze a model that generalizes signaling games in a different direction from that pursued here.

7 Such as Hurford 1989 and Komarova, Niyogi, and Nowak 2001.
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If we start with a pair of sender and receiver strategies, and switch

the messages around the same way in both, we get the same payoffs.

In particular, permutation of messages takes one signaling-system

equilibrium into another. This fundamental symmetry is what

makes Lewis signaling games a model in which the meaning of

signals is purely conventional.8 It also raises in stark form a question

that bothered some philosophers from ancient times onward. There

seems to be no sufficient reason why one signaling system rather than

another should evolve. Of course, there may be many signaling

systems in nature which got an initial boost from some sort of

natural salience. But it is worth considering, with Lewis, the

worst case scenario in which natural salience is absent and signaling

systems are purely conventional.

Information in signals

Signals carry information.9 The natural way to measure the infor-

mation in a signal is to measure the extent that the use of that

particular signal changes probabilities.10 Accordingly, there are two

kinds of information in the signals in Lewis sender-receiver games:

information about what state the sender has observed and informa-

tion about what act the receiver will take. The first kind of infor-

mation measures effectiveness of the sender’s use of signals to

discriminate states; the second kind measures the effectiveness of

the signal in changing the receiver’s probabilities of action.11

8 Some signaling interactions may not have this strong symmetry and then signals may

not be perfectly conventional. There may be some natural salience for a particular signaling

system. Here we are addressing the worst case for the spontaneous emergence of signaling.

9 I follow Dretske 1981 in taking the transmission of information as one of the funda-

mental issues of epistemology.

10 This can be measured in a principled way using the discrimination information of

Kullback and Leibler 1951; Kullback 1959. We will look at this more closely in Chapter 3.
11 Corresponding to these two types of information, we can talk about two types of

content of a signal. See Russell 1921; Millikan 1984; Harms 2004.
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Both kinds of information are maximal in a signaling-system equi-

librium. But this does not uniquely characterize a signaling system.

Both kinds of information can also be maximal in a state in which the

players miscoordinate, and the receiver always does an act that is

wrong for the state. Then there is plenty of information of both

kinds, but it seems natural to say that information has not been

successfully transmitted (or perhaps thatmisinformation is transmitted.)

Transmission of information clearly consists of more than the

quantity of information in the signal. To deal with this example,

you might think that we have to build in mentalistic concept of

information—specifying what the sender intended the signal to

mean and what the receiver took it to mean. Within the framework

of Lewis signaling games this is not necessary. Sender and receiver

have pure common interest. Perfect information about the state is

transmitted perfectly if the receiver acts just as he would if he had

direct knowledge of the state. As Democritus said, “The word is the

shadow of the act.”12

A general treatment of information in signaling requires a lot

more than this simple observation. In Chapter 3, I will develop a

unified framework for both informational quantity and informational

content of signals. The notion of informational content will be new,

and will allow a resolution of some philosophical puzzles.

Evolution

As a simple explicit model of evolution, we start with the replicator

dynamics.13 This has interpretations both for genetic evolution and

for cultural evolution. The population is large, and either differen-

tial reproduction or differential imitation lead the population pro-

portion of strategy A, p (A), to change as:

12 Barnes 1982: 468.
13 For a canonical reference, see Hofbauer and Sigmund 1998.
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dpðAÞ=dt ¼ pðAÞ½UðAÞ �U�
where U(A) is the average payoff to strategy A and U is the average

payoff in the population.

Evolutionary dynamics could operate on one population of

senders and another of receivers as in some cases of interspecies

communication, or it could operate on a single population, where

individuals sometimes find themselves in the role of sender and

sometimes in the role of receiver.

Consider the two-population model for the simplest Lewis

signaling game—two states, two signals, two acts. Nature chooses

a state by flipping a fair coin. And for further simplification, suppose

the population has senders who only send different signals for

different states and receivers who only perform different acts

when they get different signals. There are then only two sender’s

strategies:

S1: State 1 ¼> Signal 1

State 2 ¼> Signal 2

S2: State 1 ¼> Signal 2

State 2 ¼> Signal 1

and only two receiver’s strategies:

R1: Signal 1 ¼> Act 1

Signal 2 ¼> Act 2

R2: Signal 1 ¼> Act 2

Signal 2 ¼> Act 1

The pairs <S1,R1> and <S2,R2> are the signaling system equili-

bria. (We will consider varying the numbers of states, signals and

acts, and the probabilities of the states, and the payoffs in subsequent

chapters.)

The population dynamics lives on a square, with p(S2), the

proportion of senders playing strategy S2, on the y axis and

p(R2), the proportion of receivers playing strategy R2, on the x

axis. It looks like this:

10 SIGNALS: EVOLUTION, LEARNING, AND INFORMATION



There are 5 dynamic equilibria—the four corners and one in the

center of the square—but three of them are dynamically unstable.

The two signaling systems are the only stable equilibria, and evolu-

tion carries almost every state of the combination of populations to

either one signaling system or another.

Consider a one-population model where the agent’s contingen-

cy plans, if sender . . . and if receiver . . . correspond to the four corners

of the model we just considered. The dynamics lives on a tetrahe-

dron. It looks like this:

The vertices are dynamic equilibria, and in addition there is a line of

equilibria running through the center of the tetrahedron. But again,

all the equilibria are unstable except for the signaling systems. All states

to one side of a plane cutting through the tetrahedron are carried to

one signaling system; all to the other side to the other signaling system.

Figure 1.1: Replicator dynamics, two populations.
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Almost every possible state of the population is carried to a signaling

system. More complex cases are discussed in Chapters 4 and 5.

We see in these simple cases how a perfectly symmetric model

can be expected to yield an asymmetric outcome. In our two

examples, the principle of sufficient reason is defeated by symmetry

breaking in the evolutionary dynamics. The population moves to a

signaling system as if—one might say—guided by an unseen hand.

Learning strategies

As a simple explicit model of unsophisticated learning, we start with

reinforcement according to Richard Herrnstein’s matching law—the

probability of choosing an action is proportional to its accumulated

rewards.14 We start with some initial weights, perhaps equal,

14 First proposed in Herrnstein 1970 as a quantification of Thorndike’s law of effect, later

used by Roth and Erev 1995 to model experimental human data on learning in games, by

Othmer and Stevens 1997 to model chemotaxis in social bacteria, and by Skyrms and

Pemantle 2000 to model social network formation.

sig I

sig II

Figure 1.2: Replicator dynamics, one population.
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assigned to each action. An act is chosen with probability propor-

tional to its weight. The payoff gained is added to the weight for the

act that was chosen, and the process repeats. As the weights build

up, the process slows down in accordance with what psychologists

call the law of practice.

Consider repeated interactions between two individuals, one

sender and one receiver, who learn strategies by this kind of rein-

forcement. This set-up resembles the two-population evolutionary

model, except that the process is not deterministic, but chancy. For a

nice tractable example consider the two-state, two-signal, two-act

signaling game of the last section. Computer simulations show

agents always learning to signal, and learning is reasonably fast.

Learning actions

We helped the emergence of signaling in the foregoing model by

letting reinforcement work on complete strategies in the signaling

game—on functions from input to output. Essentially, the modeler

has done some of the work for the learners. I take this as contrary to

the spirit of Democritus, according to which the learners should

not have to conceive of the problem strategically. Let us reconcep-

tualize the problem by having reinforcement work on single actions

and see if we still get the same result.

To implement this for the simplest Lewis signaling game, the

sender has separate reinforcements for each state. You can think of

it as an urn for state 1, with red balls for signal 1 and black balls for

signal 2; and another such urn for state 2. The receiver also has two

urns, one for each signal received, and each containing balls for the

two acts. Nature flips a fair coin to choose the state. The sender

observes the state and draws a ball from the corresponding urn to

choose a signal. The receiver observes the signal and draws a ball

from the corresponding urn to choose an act. The act is either

successful, in being the act that pays off in that state, or not.

Reinforcement for a successful act is like adding a ball of the

SIGNALS 13



color drawn to the sender and receiver urn just sampled. The

individuals are being reinforced for “what to do on this sort of

occasion.” We can then ask what happens when these occasions fit

together to form a signaling game.

This model appears to be more challenging than the one in the

previous section. There are now four interacting reinforcement pro-

cesses instead of two. Equilibria where the sender ignores the state and

the receiver ignores the signal are no longer ruled out by appeal to the

agents’ intelligence and good intentions. Nevertheless, there is now

an analytic proof15 that reinforcement learning converges to a signal-

ing system with probability one. The robustness of this result over a

range of learning rules is discussed in Chapters 6 and 7.

States, acts, and signals

In the simplest Lewis signaling games, the number of states, acts,

and signals are assumed to be the same. Why should this be so?

What if there is a mismatch? There may be extra signals, or too few

signals, or not enough acts. All these possibilities raise questions that

are interesting both philosophically and mathematically.

Suppose there are too many signals. Do synonyms persist, or do

some signals fall out of use until only the number required to

identify the states remain in use? Suppose there are too few signals.

Then there is, of necessity, an information bottleneck. Does effi-

cient signaling evolve; do the players learn to do as well as possible?

Suppose there are lots of states, but not many acts. How do the acts

affect how the signaling system partitions the states?

If we have two states, two acts and three signals, we could imagine

that the third signal gets in the way of efficient signaling, or that one

signal falls out of use and one ends up with essentially a two-signal

system, or that one signal comes to stand for one state and the other

two persist as synonyms for the other state. Simulations of the

15 Argiento, Pemantle, Skyrms, and Volkov 2009.
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learning process of the last section always produce efficient signaling,

often with the persistence of synonyms. Learning is about as fast as in

the case where there are only two signals.

If we have three states, three acts and only two signals, there is an

information bottleneck. The best that the players could do is to get it

right 2/3 of the time. This could bemanaged in variousways. The

sender might use signals deterministically to partition the

states—for example, send signal 1 in state 1 and signal 2 other-
wise. Anoptimal receiver’s strategy in replywould be to do act 1
when receiving signal 1, and to randomize between acts 2 and 3
with any probability. This identifies a whole line of equilibria,

corresponding to the randomizing probability. Alternatively,

the receiver could be deterministic—for example, doing act 1
for signal 1 and act 2 for signal 2. If so, an optimal sender’s

strategy to pair with this would always do sending signal 1 in

state 1 and signal 2 in state 2, but randomizing in state 3. This
identifies another line of efficient equilibria.16 There are, of

course, also lots of inefficient equilibria. Simulations always

deliver efficient equilibria. They are always of the first kind,

not the second. That is to say the signaling system always

partitions the states. Learning is still fast.

If we have three states, but only two signals and two acts, we can

have act 1 right for state 1, and act 2 right for state 3, and then vary

the payoffs for state 2:

If e<.5 it is best to have one signal (which elicits act 1) sent in both

state 1 and state 2; and the other signal (which elicits act 2) sent in

state 3. If e> .5 an efficient equilibrium lumps states 2 and 3 together.

The optimal payoff possible depends on e: 2/3 for e ¼ .5 and

1 for e ¼ 0 or e ¼ 1. For the whole range of values, optimal

Payoffs State 1 State 2 State 3

Act 1 1 1-e 0

Act 2 0 e 1

16 Notice that these two lines share a point. If we consider all the lines of efficient

equilibria, we have a cycle.
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signaling emerges. These generalized signaling games are dis-

cussed in Chapter 8. The signaling game itself may not be

fixed. The game structure itself may evolve. A model of

signaling with invention of new signals is introduced in

Chapter 9. The combination of simple signals to form com-

plex signals is discussed in Chapter 11.

Signaling networks

Signaling is not restricted to the simple 1-sender, 1-receiver case

discussed so far. Alarm calls usually involve one sender and many

receivers, perhaps with some of the receivers being eavesdroppers

from other species. Quorum signaling in bacteria has many indivi-

duals playing the role of both sender and receiver. The brain

continually receives and dispatches multiple signals, as do many of

its constituents. Most natural signaling occurs in networks. A sig-

naling network can be thought of as a directed graph, with an edge

directed from node A to node B signifying that A sends signals to B.

All our examples so far have been instantiations of the simplest

possible case; one sender sends signals to one receiver.

�!�
There are other simple topologies that are of interest. One that

I discussed elsewhere17 involved multiple senders and one receiver.

I imagined two senders who observed different partitions of the

possible states.

�!� �
In the context of alarm calls, if one sender observes a snake or

leopard is present, and another observes that there is no snake, a

receiving monkey might be well advised to take the action appro-

priate to evade a leopard. Multiple senders who transmit different

information leave the receiver with a problem of logical inference.

17 Skyrms 2000, 2004.
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It is not simply the problem of drawing a correct inference, but

rather the problem of drawing the correct inference relevant to his

decision problem. For instance, suppose sender 1 observes the truth

value of p and then sends signal A or signal B, and sender 2 observes

the truth value of q and sends C or D. Maximum specificity is

required where the receiver has four acts, one right for each

combination of truth values. But a different decision problem

might require the receiver to compute the truth value (p exclusive

or q) and to do one act if true and another if false.

Senders may observe different aspects of nature by chance, but

they might also be able to choose what they observe. Nature may

present receivers with different decision problems. Thus, a receiver

might be in a situation where he would like to ask a sender to make

the right observation. This calls for a dialogue, where information

flows in both directions.

�$�
Nature flips a coin and presents player 2 with one or another

decision problem. Player 2 sends one of two signals to player 1.

Player 1 selects one of two partitions of the state of nature to

observe. Nature flips a coin and presents player 1 with the true

state. Player 1 sends one of two signals to player 2. Player 2 chooses

one of two acts. Here a question and answer signaling system can

guarantee that player 2 always does the right thing.

A sender may distribute information to several receivers.

� �!�
One instance is the case of eavesdropping, where a third individual

listens in to a two-person sender-receiver game, with the act of the

third person having payoff consequences for himself, but not for the

other two.18 In a somewhat more demanding setup, the sender

sends separate signals to multiple receivers who then have to

18 There are also more complicated forms of eavesdropping, where the third party’s

actions have consequences for the signalers and there is conflict of interest. For a fascinating

instance, where plants eavesdrop on bacteria, see Bauer and Mathesius 2004.
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perform complementary acts for everyone to get paid. For instance,

each receiver must choose one of two acts, and the sender observes

one of four states of nature and sends one of two signals to each

receiver. Each combination of acts pays off in exactly one state.

Signalers may form chains, where information is passed along.

�!�!�
In one scenario, the first individual observes the state and signals the

state, and the second observes the signal and signals the third, which

must perform the right act to ensure a common payoff. There is no

requirement that the second individual sends the same signal that

she receives. She might function as a translator from one signaling

system to another.

When we extend the basic Lewis game to each of these net-

works, computer simulations show reinforcement learning con-

verging to signaling systems—although a full mathematical

analysis of these cases remains to be done. It is remarkable that

such an unsophisticated form of learning can arrive at optimal

solutions to these various problems. Simple signaling networks are

discussed as a locus of information processing in Chapter 10 and as a

component of teamwork in Chapter 13.

These networks are the simplest examples of large classes on

phenomena of general interest. They also can be thought of as

modules, which appear as constituents of more complex and inter-

esting networks that process and transmit information. It is possible

for modules to be learned in simple signaling interactions, and then

assembled into complex networks by either reinforcement or some

more sophisticated form of learning. The analogous process oper-

ates in evolution. The dynamics of formation of a simple signaling

network is discussed in Chapter 14.
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Conclusion

How do these results generalize? This is not so much a single

question as an invitation to explore an emerging field. Even the

simplest extensions of the models I have shown here are full of

surprising and interesting phenomena. We have seen the impor-

tance of focusing on adaptive dynamics. The dynamics can be

varied. On the evolutionary side, we can add mutation to differen-

tial reproduction. In addition, we might move from the large

population, deterministic model of the replicator dynamics to a

small population stochastic model. The mathematical structure of

one natural stochastic model of differential reproduction is remark-

ably similar to our model of reinforcement learning.19 On the

learning side, we should also consider more sophisticated types of

learning. From considering evolution in a fixed signaling game we

might move to evolution of the game structure itself. We should

explore both signaling on various kinds of networks, but also the

dynamics of formation of signaling networks. The rest of this book

is an introduction to these topics.

We started with a fundamental question. Suppose we start with-

out pre-existing meaning. Is it possible that, under favorable con-

ditions, unsophisticated learning dynamics can spontaneously

generate meaningful signaling? The answer is affirmative. The

parallel question for evolution turns out to be not so different,

and is answered in the same way. The adaptive dynamics achieves

meaning by breaking symmetry. Democritus was right. It remains

to explore all the ways in which he was right.

19 Schreiber 2001.
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2

Signals in Nature

“Since monkeys certainly understand much that is said to them by

man, and when wild, utter signal-cries of danger to their fellows; and

since fowls give distinct warnings for danger on the ground, or in the

sky from hawks (both, as well, as third cry, intelligible to dogs), may

not some unusually wise ape-like animal have imitated the growl of a

beast of prey, and thus told his fellow-monkeys the nature of the

expected danger? This would have been the first step in the formation

of a language.”

Charles Darwin, The Descent of Man

Darwin sees some kind of natural salience operating at the origin of

language. At that point signals are not conventional, but rather the

signal is somehow naturally suited to convey its content. Signaling

is then gradually modified by evolution. Darwin is thinking of

biological evolution, but for humans (and some other species)

there is a version of the account that substitutes cultural evolution

or social learning for biological evolution. This view of the origins

of language goes back to the late Epicureans.1 They could not see

how language could have originated out of nothing by pure con-

vention, because some pre-existing language seems to be required

to set up the convention.

The same objection to a kind of conventionalism comes down

through the history of philosophy, through Rousseau2 to Quine’s

1 Verlinski 2005.
2 “a unanimous agreement would have to be proposed, which means that speech seems

absolutely necessary to establish the use of speech.” Discourse on Inequality 94.



“Truth by Convention.” It is most trenchantly put by Russell:3 “We

can hardly suppose a parliament of hitherto speechless elders meeting

together and agreeing to call a cow a cow and a wolf a wolf.”

The conventionalist being refuted is, however, a kind of

straw man. That convention need not be explicitly proposed and

accepted, but can arise by a gradual evolutionary process, was

clearly seen by David Hume:

Two men, who pull the oars of a boat, do it by an agreement or

convention, tho’ they have never given promises to each other. Nor is

the rule concerning the stability of possession the less derive’d from

human conventions, that it arises gradually, and acquires force by a slow

progression, and. by our repeated experience of the inconveniences of

transgressing it. . . . In like manner are languages gradually establish’d by

human conventions without any promise.4

Hume did not, however, tell us how this process of cultural

evolution started in the first place. The possibility of symmetry-

breaking, as discussed in Chapter 1, demonstrates the possibility of

an origin of signals without any natural salience whatsoever.

In some cases there may well be natural salience, in which case

the amplification of pre-existing inclinations into a full fledged

signaling system is that much easier. A dog’s baring of teeth as a

threat gesture is a particularly plausible example. “Bare teeth to

bite” leads to “Conspicuously bare teeth to signal on the verge of

biting.” (But remember that we bare our teeth to smile.)

The Darwin–Lucretius scenario of some small initial natural

salience amplified by evolutionary feedback may well be the correct

one for many evolutionary histories. It does not require any modi-

fication of the signaling games introduced in Chapter 1. It can be

represented in signaling games simply by moving the initial prob-

abilities off exact symmetry—in a given state the sender is initially

more likely to send one particular signal rather than others, and a

3 The Analysis of Mind, Lecture X, 113.
4 Hume, Bk III, Part I, Sec. 2.
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receiver is more likely to react to that signal in the appropriate way.

That is to say that signaling game models easily accommodate

natural salience but do not require it. Democritus’ deep insight is

fundamental. Even without natural salience, signaling systems can

evolve.

There is more in this remarkable passage from Darwin. He

already knows about predator-specific alarm calls. A sentinel of

the prey species gives an alarm call that not only signals danger,

but also identifies the class of predator present. Classes of predators

are grouped according to appropriate escape behavior, and a dis-

tinct signal is assigned to each. These have recently become well

known through the study of Vervet monkeys in the Amboseli

forest by Dorothy Cheney and Richard Seyfarth.5 Subsequently,

species-specific alarm calls have been found in many species of

monkeys—Diana Monkeys6 and Campbell’s Monkeys7 in the old

world, and two species of Tamarins8 in the new—as well as in

lemurs,9 a social mongoose,10 prairie dogs,11 and red squirrels.12 A

whole series of careful studies shows that they are used by domestic

chickens,13 14 just as Darwin says they are.

Cheney and Seyfarth15 show that vervets have distinct alarm calls

for different classes of predator: a “cough” for an eagle, a “bark” for

a leopard, and a “chutter” for a snake. For each predator a different

evasive action is optimal. For leopards it is usually best to run up a

tree and out on a branch where a leopard cannot follow; for snakes

one should stand tall and scan the ground to locate the snake and

then move away from it; for eagles it is best to exit a tree, take cover

5 Cheney and Seyfarth 1990.
6 Zuberbühler 2000.
7 Zuberbühler 2001.
8 Kirchhof and Hammerschmidt 2006.
9 Macedonia 1990.
10 Manser et al. 2002.
11 Slobodchikoff et al. 1991.
12 Green and Maegner 1998.
13 Gyger et al. 1987.
14 Evans et al. 1994.
15 Following earlier work by Struhsaker 1967.
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in the underbrush, and look upward to detect the location of the

predator. Each alarm call elicits the appropriate behavior—both in

the natural setting and in experiments where recorded alarm calls

are played back.

Nature has presented vervets with something very close to a

classic Lewis signaling game and they have achieved something

very close to a signaling-system equilibrium. The states are eagle

present, leopard present, snake present and the acts are hide in underbrush,

run up tree, scan and move away. The signaling system consists of a

pairing of sender and receiver strategies:

that constitutes a Lewis signaling system.

This is, of course a simplification. We could have a state where

no predator is present, a null signal consisting of normal sounds, a

null action of business as usual, with perhaps some costs to sending a

signal other than the null signal. We could include minor predators

and minor predator alarm calls, which do really exist. If a leopard is

close, a monkey far from a tree might just dive into underbrush.

But, for the moment, the idealization is not bad.

The same pattern is repeated in other species with predator-

specific alarm calls. Meerkats live in semi-desert areas in South

Africa. They are prey to jackals, to eagles and hawks, and to

snakes—cape cobra, puff adder, and mole snake. Meerkat alarm

calls distinguish these three classes of predator. But they also distin-

guish the urgency of the threat. This has important implications

because of the terrain, and because the meerkats live in burrows and

forage within 100–150 feet of a burrow. A high-urgency eagle

alarm call will lead meerkats to crouch and freeze. But on hearing

SENDER RECEIVER

eagle ¼>cough cough¼>underbrush

leopard ¼> bark bark¼>run up tree

snake ¼> chutter chutter¼> scan and move
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a low-urgency eagle alarm call they will run to the nearest burrow

and disappear down it.16

Darwin notes in passing that one species may understand the

signals of another. Vervet monkeys can learn to understand

the alarm calls of a bird, the Superb Starling.17 These birds also

produce different alarm calls for aerial and terrestrial predators.

When the Superb Starling alarm calls were played back to captive

vervets, they took the appropriate evasive action for the indicated

type of predator.18

This may not be very surprising. Monkeys are very clever. But

some birds reciprocate by using the information in alarm calls of

monkeys. Diana monkeys in West Africa are prey to leopards and

crowned eagles and have distinct alarm calls for each predator.

Crowned eagles also prey upon the yellow-casqued hornbill, a

large bird about the same size as a Diana monkey, but leopards do

not. Playbacks of recorded Diana monkey alarm calls show horn-

bills responding to Diana monkey eagle alarms calls just as to

recorded eagle shrieks, but not to Diana leopard alarm calls and

not to leopard growls.19

These cases suggest more complex signaling games. The Diana

monkeys play the roles of sender and receiver, as in classic Lewis

signaling games, but there is also an eavesdropper—the hornbill—

who can utilize and benefit from the information in the signal, but

whose correct action benefits neither the sender nor receiver. If so,

evolution (or learning) of the signaling system is driven by the

interaction between the sender and primary receiver, with the

eavesdropper learning to get a free ride.

Receiver Sender! Eavesdropper

This case offers no difficulties for the evolution of signaling.

16 Manser et al. 2002.
17 Hauser 1988.
18 Seyfarth and Cheney 1990.
19 Rainey et al. 2004.
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There are further variations worth considering. The hornbill,

when alerted to an aerial predator, may take up the cry and utter its

own loud alarm, in which case the monkeys may gain some benefit

after all—the hornbill acting as an amplifier of the alarm. On the

other hand, there is the case where the predator itself is the third

party. The kind of predator who hunts by stealth may be deterred

by learning that it has been detected, but a different, swift, predator

might be guided to the caller.

The latter case would be an instance of evolution of altruism, and

thus strictly speaking not a Lewis signaling game. Such signaling

would call for a version of one of the existing evolutionary accounts

of evolution of altruism. For instance, altruism may evolve by kin

selection. An individual giving the alarm call may expose itself to

more danger but nevertheless promote the transmission of the

altruistic gene—which is present in kin—by increasing the survival

of kin. Where this explanation is correct, one would expect the

alarm calls to be given in the presence of kin but neither in solitude,

nor in the exclusive presence of strangers. There is evidence that

this is often the case.20 Here, one way of viewing the account is to

say that taking account of inclusive fitness, we have a Lewis signal-

ing game after all.21

So far, we have dealt with signals that are essentially one-word

sentences. That is fine, if there is not much that needs saying. But

for a species that needs to communicate a lot of information, this is

obviously grossly inefficient. It would be better to be able to

construct a variety of complex signals from a small number of

simple constituents. We can do it. Can any other species do so?

It is known that non-human primates can be trained to combine

symbols to form simple sentences, to construct novel sentences, and

20 Cheney and Seyfarth 1990; Snowdon 1990: 232.
21 Other accounts of the evolution of altruism, such as direct or indirect reciprocity, could

also come into play in giving risky alarm calls. All explanations for the evolution of altruism

work by establishing some kind of correlation of types. Such correlation allows a unified

treatment of altruistic signaling. See the discussion of “Signals for Altruists” in Skyrms 1996:
94–8.
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to use these sentences to communicate. The most remarkable case

is that of Kanzi, a Bonobo, whose (adoptive) mother was being

trained to use language. Mom was never very good at it, but Kanzi,

who was a bystander—not being trained at all—spontaneously

picked it up.22 The “language” consists of lexograms—geometric

symbols. Kanzi’s mother, with rigorous training, only managed to

learn a few symbols, but Kanzi—as a result of exceptional intelli-

gence, early age, or both—had no trouble acquiring many. He

initially tried to convey meaning without any regard to word

order, but later learned subject-verb-object order. Other captive

animals can be trained to be sensitive to grammatical distinctions,

including dolphins23 and European starlings.24

We know rather less about the use of complex signals naturally

occurring in the wild. There are intriguing anecdotes, and a few

careful studies. Both Campbell’s monkeys and Diana monkeys—

who often forage together—have predator specific alarm calls for

leopards and eagles. The two species have distinct alarm calls. Diana

monkeys respond to the alarm calls of male Campbell’s by giving

their own alarm call for the same predator. However, where the

predator is more distant, and not an immediate danger, the male

Campbell’s monkeys preface their alarm with two low “boom”

calls. Alarms calls so modified do not elicit corresponding alarm

calls by Diana monkeys. This observation was confirmed in care-

fully controlled playback experiments using recorded alarm calls.25

Here we have a natural example that combines sender, receiver,

eavesdropper, and a complex signal.

We find a higher level of syntactic complexity in bird calls.

The black-capped chickadee has a rich system of signals. In partic-

ular, the “chickadee” call from which it takes its name has been

known for some time to obey rigid syntactic rules. Contrary to the

name, there are four—not three—basic acoustic syllables which

22 Savage-Rumbaugh et al. 1986, and Savage-Rumbaugh and Lewin 1994.
23 Herman et al. 1984.
24 Gentner et al. 2006.
25 Zuberbühler 2002.
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are involved in “chickadee,” which may be denoted as A, B, C, and

D. Playback experiments show that syntactically ill-formed calls are

ignored, while well-formed calls evoke a reaction.26 The rules are

(1) any of the basic elements, A, B, C, D may be repeated

or omitted, but (2) those that occur must be in the order A, B,

C, D. Thus “BCCD” and “ABBCCCD” are well formed, but

“ACBBD” and “DCDC” are not.

Two properties of this simple syntax are noteworthy. Given any

string whose constituents are only A, B, C, D, it is effectively

decidable whether the string is grammatically well formed; you

could program a computer to give you the answer. And the class

of potential strings that are grammatically well formed is infinite.

These properties have sometimes been held up as features unique to

human syntax.27 Chickadee syntax shows us that they are not really

so remarkable.

The various chickadee calls appear to convey all kinds of infor-

mation about group and individual identity, food and predators,

but experimental analysis has been slow in coming. In a review

article in 1990, Snowdon could comment: “The main limit of this

complex grammatical system is that there is no evidence that any of

the 362 sequences documented has any functional significance.”

But more recently it has been shown that information about pred-

ator type is encoded in the number of repetitions of D notes in the

chickadee call.

Chickadees forage in the brush in small groups. Members of the

group often cannot see each other and use calls to keep in contact.

They are preyed upon by a large number of different raptors and by

a few terrestrial predators, including the domestic cat.

Large raptors, such as the great horned owl, are easier for the

small, agile chickadee to evade than small raptors. Raptors in flight

can attack rapidly by diving, to which spotted chickadees give a

26 Hailman et al. 1985.
27 Chomsky 1957 and thereafter. The claim is repeated in Hauser et al. 2002. But compare

Pinker and Jackendoff 2005.
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special “seet” call. Perched raptors and cats evoke a different

response. Chickadees give a version of the chickadee call that

functions as a recruitment alarm. On hearing the call, birds do

not take cover, but rather mob the predator and drive it away.

Presentation experiments with 15 species of live predators showed

that the number of D’s per call correlates negatively with the size of

the predator.28 There is, no doubt, more to be learned about

information content of the full spectrum of chickadee calls.

Alarm calls are about the here and now—or the almost here and

now. Honeybees, however, communicate information about how

to find distant food sources. That they do so was already known by

Aristotle, but he did not know how. Karl von Frisch29 received a

Nobel Prize in 1973 for his analysis of how this information is

transmitted through the “waggle dance.”

On returning from a new food source close to the hive, a

working bee performs a circle dance that motivates others to simply

go out and search for the flowers. But if the source is far away, the

worker performs a “waggle dance” on a vertical surface. There is a

relatively straight run with a zigzag or “waggling” component,

followed by circling back and repetition. Bees use the information

in the dance to reliably find the vicinity of food sources, and they

use scent to home in on them. Although some have found this

conclusion hard to accept, is seems now to be well established.30

Von Frisch found that the length of the waggling run encodes

the distance to the food source and that the angle from the vertical

to the main axis of the dance corresponds to the angle from the sun

to the food source. To judge this angle accurately the bees must be

able to perceive polarization of sunlight, which indeed they can. In

fact, it was the analysis of the waggle dance that led to the discovery

that bees had this ability to detect polarization.

28 Tempelton et al. 2005.
29 von Frisch 1967.
30 See, for instance, Gould 1975; Riley et al. 2005.
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Here we find—for the first time in the chapter—examples of

natural salience. Correlation of the run with distance needs no

explanation. Equating the angle from the vertical to angle from

the sun is more of a stretch. But ancestral bees may have danced on

an exposed horizontal surface of the hive with the direction of the

run pointing directly towards the food source, as is the case in some

dwarf honeybees.31 Subsequent evolution could then have gradu-

ally modified the system to its present, more mysterious state—

where dancing is vertical, inside the hive, and requires the bees’

abilities to detect polarization of light to decode the information.

Honeybees have to cooperate to make their living, and cooper-

ation requires the exchange of information. The waggle dance is

only one instance of several signaling systems used by bees.32 Even

simpler organisms have evolved ways of exchanging information to

coordinate behavior.

Myxococcus xanthus is social bacterium whose groups have been

compared to microbial wolf packs. They forage in the soil, and

when they detect groups of other bacteria they exude enzymes

that digest them, and they absorb the resulting nutrients.33 When

nutrients are exhausted, and they begin to starve, they aggregate

by gliding on slime trails, and differentiate to form a fruiting body.

In the interior of the fruiting body some cells differentiate to

become spores. These lie dormant until favorable environmental

conditions allow the life cycle to repeat. A social group becomes,

temporarily, a multicellular organism.34 All this is accomplished

through chemical signals.

Some of these signals are now understood.35 The first stage of

aggregation is triggered by a small molecule produced by starving

31 Dyer and Seeley 1991.
32 Maynard-Smith and Harper 2003: 115 compare the known vocabularies of honeybees

and Vervet monkeys and find that that of the bees is larger.

33 Berleman, Scott, Chumley, and Kirby 2008.
34 These prokaryotes have discovered the same survival strategy that is well known in the

eukaryotes—the cellular slime molds.

35 Kaiser 2004.
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bacteria, which diffuses through the cell membrane. Low concen-

trations of this molecule—call it signal A—have no effect, but at a

certain threshold concentration, aggregation is initiated. Later, in

the process of fruiting body formation, a different signal plays an

essential role. This second signal operates locally. It requires end-

to-end contact between individual bacteria.

The fact that the concentration of signal A requires a certain

threshold to be effective has important consequences for survival.

Fruiting body development kills most of the bacteria involved—

most don’t become spores. The situation must be dire enough to

justify this strategy, and there must be enough starving bacteria to

carry it out successfully.

This signaling system is an instance of what is called quorum-

sensing. The name refers to the fact that a quorum must be present

for a particular collective action to be carried out successfully.

Quorum-sensing was first discovered in 1977 in a bioluminescent

marine bacterium (Vibrio fisheri) that lives in the light organs of a

squid. The bacterium uses quorum-sensing to activate the genes

for bioluminescence. The squid turns the light off or on (for

the purpose of camouflage) by controlling the concentration of

the signal molecule. The squid increases the concentration by

providing nutrients to the bacteria, which multiply rapidly. It

decreases the concentration by expelling bacteria into the ocean

and taking in seawater. On a sunny day, the squid is visible to

predators below it as a shadow. It can disguise itself by activating

bioluminescence. At night, it is best to turn off the lights.

Since 1977, it has been discovered that quorum-sensing signaling

systems are common among bacteria.36 Some bacteria have multi-

ple quorum-sensing systems, one specific to the species, but others

that enable monitoring the concentrations of other species. Within

the family of gram-negative bacteria, different species have small

modifications of the basic (AHL) signaling molecule, and put it to

different uses: to control biofilm formation (like the plaque on your

36 Taga and Bassler 2003; Schauder and Bassler 2001.
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teeth), virulence, and spore formation. A different basic signaling

circuit is used in gram-positive bacteria to trigger an equally diverse

set of behaviors. A third circuit is an interspecies signaling system,

shared by both groups. It is sometimes used in infections—for

instance in the lungs of those with cystic fibrosis—to help trigger

the formation of a mixed species biofilm. Some plants and algae

produce molecules that block the quorum-sensing signals used by

bacterial infections.37

At this level, natural salience almost seems like an understate-

ment. Isn’t everything here just chemistry? How could there be any

element of conventionality? Well, let’s remember that we are com-

posed of entities governed by physics and chemistry. Convention-

ality enters when there is enough plasticity in the signaling

interactions to allow alternative signaling systems. For bacteria,

biochemistry sets strict rules. But if we look at quorum-sensing

over evolutionary time, and reflect on the variety of uses to which

the same basic system has been put, we can recover a sense of the

plasticity of signaling. Pure convention is gone, but development of

the same ancestral signaling system could go one way or another—

and in different species of bacteria has done so. Rather than focusing

exclusively on pure conventionality, we should also bear in mind

cases where there are degrees of conventionality associated with

degrees of plasticity in signaling.

Discussions of primate signaling have been dominated by issues

imported from human philosophy of mind. What is in the sender’s

consciousness when she sends the signal and in the hearer’s when

she receives it? Does the sender have a theory of the receiver’s

mind, that she uses to predict how the hearer will interpret a signal

and respond to it? These are important questions, worthy of careful

discussion.

But philosophy of mind will not help us very much in under-

standing communication in bacteria (or bees, or chickadees), which

37 Taga and Bassler 2003; Bauer and Mathesius 2004.
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nevertheless appear to do it quite successfully. The place to start is

not with a self-conscious mental theory of meaning, intention, or

common knowledge, but rather to focus on information. Signals

transmit information, and it is the flow of information that makes

all life possible.
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3

Information

“In the beginning was information. The word came later.”

Fred Dretske, Knowledge and the

Flow of Information (1981)

Epistemology

Dretske was calling for a reorientation in epistemology. He did

not think that epistemologists should spend their time on

little puzzles1 or on rehashing ancient arguments about skepti-

cism. Rather, he held that epistemology would be better

served by studying the flow of information. Although we may

differ on some specifics, I am in fundamental agreement with

Dretske.

Information is carried by signals. It flows through signaling net-

works that not only transmit it, but also filter, combine, and process

it in various ways. We can investigate the flow of information using

a framework of generalized signaling games. The dynamics of

evolution and learning in these games illuminate the creation and

flow of information.

1 I must admit to having done some of this, before I knew better.



Information

What is the information in a signal? There are really two questions:

What is the informational content of a signal? and What is the quantity of

information in a signal?

Some philosophers have looked at information theory and have

seen only an answer to the question of quantity. They do not see an

answer to the question of content—or, to use a dangerous word,

meaning—of a signal. As a result they move to a semantic notion of

information, where the informational content in a signal is con-

ceived as a proposition. The information in a signal is to be

expressible as “the proposition that——.” Signals then, in and out

of equilibrium, are thought of as the sorts of things that are either

true or false. Dretske takes that road and, as he himself says, it

reduces the role of information theory to that of a suggestive

metaphor. Others have followed his lead.

I believe that we can do better by using a more general concept of

informational content. A newdefinition of informational contentwill

be introduced here. Informational content, so conceived, fits natural-

ly into the mathematical theory of communication and is a generali-

zation of standard philosophical notions of propositional content.

The informational content of a signal consists in how the signal

affects probabilities. The quantity of information in a signal is

measured by how far it moves probabilities. It is easy to see the

difference. Suppose, for instance, that there are two states, initially

equiprobable. Suppose that signal A moves the probabilities to 9/10

for state 1 and 1/10 for state 2, and that signal B moves

the probabilities in exactly the opposite way: 1/10 for state 1 and

9/10 for state 2. Even without knowing exactly how we are going

to measure quantity of information, we know by considerations

of symmetry that these two signals contain the same amount of

information. They move the initial probabilities by the same

amount. But they do not have the same informational content, be-

cause they move the initial probabilities in different directions.
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Signal A moves the probability of state 1 up; signal B moves it

down.

The key to information is moving probabilities. What probabil-

ities? We use the framework of a sender-receiver signaling game

with evolving strategies.2 That means that we are interested in

information not only in equilibrium, but also before interactions

have reached equilibrium. It is part of the structure of the game that

the states occur with certain probabilities. The probabilities of

sender and receiver strategies change over time. In learning dynam-

ics, these probabilities are modified by the learning rule; in evolu-

tion they are interpreted as population frequencies changing by

differential reproduction. At any given time, in or out of equilibri-

um, all these probabilities are well defined. Taken together, they

give us all the probabilities that we need to assess the content and

the quantity of information in a signal at that time.3 Informational

content evolves as strategies evolve.

How should we measure the quantity of information in a signal?

The information in the signal about a state depends on a compari-

son of the probability of the state given that this signal was sent and

the unconditional probability of the state. We might as well look at

the ratio:

prsigðstateÞ=prðstateÞ
where prsig is the probability conditional on getting the signal. This

is a key quantity.4 The way that the signal moves the probability of

the state is just by multiplication by this quantity.

But when a signal does not move the probability of a state at all—

for instance if the sender sends the same signal in all states—the ratio

2 As always, there is the question of whether the framework is being correctly applied to

model the situation of interest. We assume here that it is.

3 The probabilities never really hit zero or one, although they may converge towards

them. So conditional probabilities are well defined. We don’t have to worry about dividing

by zero. If it appears in an example that we are dividing by zero, throw in a little epsilon.

4 By Bayes’ theorem, the same quantity can be expressed as:

prðsignal given stateÞ=prðsignalÞ:
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is equal to one, but we would like to say that the quantity of

information is zero. We can achieve this by taking the logarithm

to define the quantity of information as:

log ½prsigðstateÞ=prðstateÞ�
This is the information in the signal in favor of that state. If we take

the logarithm to the base 2, we are measuring the information in

bits.

A signal carries information about many states, so to get an

overall measure of information in the signal we can take a weighted

average, with the weights being the probabilities of the states

conditional on getting the signal:

IstatesðsignalÞ ¼
X

i
prsigðstate iÞlog½prsigðstate iÞ=prðstate iÞ�

This is the average information about states in the signal. It is

sometimes called the Kullback–Leibler distance,5 or the informa-

tion gained. All this was worked out over 50 years ago,6 shortly after

Claude Shannon published his original paper on information theo-

ry. It goes under a slightly different name, the information provided by

an experiment, in a famous article by Dennis Lindley.7 Receiving a

signal is like looking at the result of an experiment. Alan Turing

used almost the same concept in his work breaking the German

Enigma code during World War II.8

For example, consider our simplest signaling game fromChapter 1,

where there are two states, two signals and two acts, with the

states equiprobable. A signal moves the probabilities of the states,

and how it moves the probability of the second state is deter-

mined by how much it moves the probability of the first, so we

can plot the average information in the signal as a function of the

probability of the first state given the signal. This is shown in

figure 3.1:

5 Although not technically a metric because it is not symmetric.

6 Kullback and Leibler 1951, and Kullback 1959.
7 Lindley 1956.
8 See I. J. Good’s preface to Good Thinking 1983.
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If the signal does not move the probability off one-half, the

information is 0; if it moves the probability a little, there is a little

information; if it moves the probability all the way to one or to zero,

the information in the signal is one bit. In a signaling-system equilib-

rium, one signal moves the probability to one and the other moves it

to zero, so each of the two signals carries one bit of information.

The situation is different if the states are not initially equiproba-

ble. Suppose that the probability of state 1 is 6/10 and that of state 2

is 4/10. Then a signal that was sent only in state two would carry

more information than one that only came in state one because it

would move the initial probabilities more, as shown in figure 3.2:

In a gamewith four equiprobable states a signal that gives one of the

states probability one carries two bits of information about the state.

Compare a somewhat more interesting case from Chapter 1, where

nature chooses one of four states by independently flipping two fair

coins. Coin 1 determines up or down—let us say—and coin 2 deter-

mines left or right. The four states, up-left and so on, are equiproba-

ble. There are now two senders. Sender 1 can observe only whether

nature has chosen up or down; sender 2 observes whether it is left or

right. Each sends one of two signals to the receiver.

0.2 0.4 0.6 0.8 1
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0.6
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Figure 3.1: Information as a function of probability of state 1 given signal,
state initially equiprobable.
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The receiver chooses among four acts, one right for each state.

In an optimal signaling system equilibrium for this little signaling

network, pairs of sender signals identify each of the four states with

probability one—and the receiver makes the most of the informa-

tion in the signals. In such a signaling system each signal carries one

bit of information. One bit from each of the senders adds up to the

two bits we had with one sender and four signals. This is a mathe-

matical convenience of having taken the logarithms to the base 2.

Information about the act

All of the information discussed so far is defined by the probabilities

with which nature chooses acts and the probabilities of the sender

strategies. But there is also a different kind of information in the signals.

We have been discussing information about the state of nature, but there is

also information about the act that will be chosen. The definitions are

entirely analogous to those of information about the state.
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Figure 3.2: Information as a function of probability of state 1 given signal,
state 1 initially at probability of .6.
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Taken together, probabilities of the states, probabilities of sen-

der’s strategies, and probabilities of receiver’s strategies give us

unconditional probabilities of the acts. Just add up the probabilities

of all combinations that give the act in question its initial probability.

Probabilities of receiver’s strategies alone give us probabilities of acts

given a certain signal. The information in the signal is now measured

by how much the signal moves the probabilities of the acts. The

average information about the act in a signal is:

IactsðsignalÞ ¼
X

i
prsigðact iÞlog½prsigðact iÞ=prðact iÞ�

The definition has just the same form and rationale as the definition

of information about the state. There are thus two kinds of infor-

mation in a signal, and two quantities summarizing amounts of

information in a signal.

The two quantities need not be the same. For instance, suppose

that the sender chooses a different signal for each state but the

receiver isn’t paying attention and always does the same act. Then

there is plenty of information about the states in the signals, but zero

information about the acts. Conversely, suppose that the sender

chooses signals at random but the receiver uses the signals to dis-

criminate between acts. Then there is zero information about the

states in the signals, but there is information about the acts. There

may be more states than acts or more acts than states. It is only in

special cases where the two quantities of information are the same.

Creation of information in a signal

Let us reflect on what was shown in Chapter 1. Evolution can create

information. It is not simply a question of learning to use informa-

tion that is lying around, as is the case when we observe a fixed

nature. With natural signs—smoke means fire—the information

about states is just there, and we need to learn how to utilize it.

Nature is not playing a game and does not have alternative
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strategies. Information about acts arrives on the scene when we learn

to react appropriately to the information about states contained in

the smoke. But in signaling games, there may be no initial infor-

mation about acts or states in the signals. Senders and receivers may

just be acting randomly. When evolution (or learning) leads to a

signaling system, information is created. Symmetry-breaking shows

how information can be created out of nothing. Figure 3.3 shows the

creation of information about states by reinforcement learning in a

two-state, two-signal, two-act signaling game.

Informational content

Now that we know how to measure the quantity of information in

a signal, let us return to informational content. This is sometimes

supposed to be very problematic, but I think that it is remarkably

straightforward.Quantity of information is just a summary number—

one bit, two bits, etc. Informational content must be a vector.9
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Figure 3.3: Creation of information ex nihilo by reinforcement learning.

9 This is information content within a given signaling game. It is implicit that this vector

applies to the states or acts of this game. For a different game, the content vector shows how

the signal moves probabilities of different states, or different acts. Content depends on the

context of the signaling interaction. It is a modeling decision as to which game is best used to

analyze a real situation.
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Consider the information in a signal about states, where there are

four states. The informational content of a signal tells us how the

signal affects the probabilities of each of the four states. It is a vector

with four components, one for each state. Each component tells us

how the probability of that state moves. So we can take the

informational content of a signal to be the vector:

< log½prsigðstate 1Þ=prðstate 1Þ�; log½prsigðstate 2Þ=prðstate 2Þ�;‥‥ >

The informational content about acts in the signal is another vector of

the same form.

Suppose that there are four states, initially equiprobable, and

signal 2 is sent only in state 2. Then the informational content

about states of signal 2 is:

IStatesðSignal 2Þ ¼< �1; 2;�1;�1 >

The �1 components tell you that those states end up with proba-

bility zero. (The �1 is just due to taking the logarithm—no cause

for alarm.) The entry for state 2 tells you how much its probability

has moved. If the starting probabilities had been different, this entry

could have been different. For instance, if the initial probability of

this state had been 1/16 with everything else the same, the infor-

mation about states in signal 2 would have been:

IStatesðSignal 2Þ ¼< �1; 4;�1;�1 >

“Wait a minute,” someone is sure to say at this point. “Something very

important has been left out!” What is it? “But shouldn’t the content—at

least the declarative content—of a signal be a proposition? And isn’t a

proposition a set of possible worlds or situations?”

Suppose a proposition is taken to be a set of states. (States can be

individuated finely, and there can be lots of states if you please.) It

asserts that the true state is a member of that set. A proposition can

just as well be specified by giving the set of states that the true state is

not in. That is what the�1 components of the information vector

do. If a signal carries propositional information, that information

can be read off the informational content vector. For instance, if the
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signal “tells you” that it is “state 2 or state 4” in our example, then

the content vector will have the form:

IStatesðSignal 2Þ ¼< �1;� ;�1;�>

with the minus infinity components ruling out states 1 and 3, and

the blanks being filled by numbers specifying how the probabilities

of state 2 and 4 have moved.

That is to say that the familiar notion of propositional content as

a set of possible situations is a rather special case of the much richer

information-theoretic account of content. This vector specifies

more than the propositional content. Furthermore, some signals

will not have propositional content at all. This will be typical in

out-of-equilibrium states of the signaling game. It is the traditional

account that has left something out.

Notice that the quantity of information in a signal—as measured

by Kullback and Leibler—is just gotten by averaging over the

components of the informational content vector. It is a kind of

summary obtained from informational content.

If we average again we get the average quantity of information in

the signals. This quantity is called mutual information. If we take the

maximum of this over signaling system equilibria, we get a measure

of the information transfer capacity in the signaling game. There is a

seamless integration of this conception of content with classical

information theory.

Intentionality and teleosemantics

Some philosophers take the view that real information presupposes

intentionality and that consequently the mathematical theory of

information is irrelevant to informational content. The semantic

notion of information is conflated with the question of intention-

ality. What is intentionality? It is a said to be a kind of directedness

towards an object. That doesn’t tell us much, and doesn’t explain

why anyone should think it was not part of mathematical
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information theory. Signals, after all, do carry information directed

toward the states and information directed toward the acts.

The philosophical history of the concept of intentionality tells us

more. It starts with Franz Brentano,10 who held that intentionality

was what distinguished the mental from the physical. If what is

being left out is a model of the mental life of the agents, then

I would say that it should be left out when the agents lack a mental

life and put in when they do. I would not speculate on the mental

life of bees; to talk of the mental life of bacteria seems absurd; and

yet signaling plays a vital biological role in both cases. Some may

want to define signals so that these are not “real” signals, but I fail to

see the point of such maneuvers. Rather, I would treat the case

where agents have a mental life as a special case. If we have a

reasonable model of the relevant aspects of mental life, we can

put them in the model. We move some way in this direction in

the next section, where we consider subjective information.

Some have swallowed the requirement of intentionality or

something quite like it, but have tried to let Mother Nature (in

the form of evolution) supply the intentionality. As John Maynard

Smith puts it: “In biology, the use of informational terms implies

intentionality, in that both the form of the signal, and the response

to it, have evolved by selection. Where an engineer sees design, a

biologist sees natural selection.”11 This is roughly the idea behind

Ruth Millikan’s teleosemantics. An evolved signal has a directedness,

or intentionality, in virtue of the Darwinian fitness accrued by

its use.12

I say about teleosemantic intentionality the same thing I said

about mentalistic intentionality. If we have a good model where it

applies, it can be added to the theory. But neither intentionality nor

10 Brentano 1874.
11 Maynard Smith 2000.
12 See Millikan 1984. For other teleosemantic theories that do not share Millikan’s basic

commitment to a picture theory of meaning see Papineau 1984, 1987.
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teleosemantics is required to give an adequate account of the

informational content of signals. Here I stand with Dretske. The

information is just there. At this point some philosophers will say

“You might as well say that Smoke carries information about fire.”

Well, doesn’t it? Don’t fossils carry information about past life

forms? Doesn’t the cosmic background radiation carry information

about the early stages of the universe? The world is full of information.

It is not the sole province of biological systems. What is special

about biology is that the form of information transfer is driven by

adaptive dynamics.

Objective and subjective information

None of the probabilities used so far are degrees of belief of sender

and receiver. They are objective probabilities, determined by na-

ture and the evolutionary or learning process. Organisms (or or-

gans) playing the role of sender and receiver need have no cognitive

capacities.

But suppose that they do. Suppose that a sender and receiver are

human and that they try to think rationally about the signaling

game. Suppose that the sender has subjective probabilities over the

receiver’s strategies and the receiver has subjective probabilities

over the sender’s strategies, and that both have subjective probabil-

ities over the states. These subjective probabilities are just degrees of

belief; they may not be in line with the objective probabilities at all.

Then each signal carries two additional kinds of subjective information.

There is subjective information about how the receiver will react, which

lives in the sender’s degrees of belief. This is of interest to a sender

who wants to get a receiver to do something. There is subjective

information about what state the sender observed, which lives in the

receiver’s degrees of belief. This is of interest to a receiver who

wants to use the sender as a source of information about the states.

Both sender and receiver use these kinds of information in decision

making. Both sender and receiver strive (1) to act optimally given
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their subjective probabilities, and (2) to learn to bring subjective

probabilities in concordance with the objective probabilities in

the world. They may or may not succeed. When we are applying

the account to beings that can reasonably be thought to have subjec-

tive probabilities, such as perhaps ourselves,13 we now have at least

four types of informational content—two objective and two subjec-

tive. If the signaling game is more complex, for instance if there is an

eavesdropper, the informational structure becomes richer.

The flow of information

In the signaling equilibrium of a Lewis sender-receiver game, infor-

mation is transmitted from sender to receiver, but it is only in the

most trivial sense that we can be said to have a flow of information.

As a preview of coming attractions (Chapters 11, 13, 14) and as an

example of flow, let us consider a little signaling chain.

�!�!�
There are a sender, an intermediary, and a receiver. Nature chooses

one of two states with equal probability. The sender observes the

state, chooses one of two signals, and sends it to the intermediary;

the intermediary observes the sender’s signal, chooses one of her

own two signals, and sends it to the receiver. (The intermediary’s

set of signals may or may not match that of the sender.) The

receiver observes the intermediary’s signal and chooses one of

two acts. If the act matches the state, sender, intermediary and

receiver all get a payoff of one, otherwise a payoff of zero.

It is tempting to assume that these agents already have signaling

for simpler sender-receiver interactions to build upon. But even if

they do not, adaptive dynamics can carry them to a signaling

system, as shown in figure 3.4:

13 Modern psychology details systematic departures from this idealized picture.
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Although reinforcement learning succeeds in creating a signaling

chain without a pre-existing signaling background, notice that it

takes a much longer time than in the simpler two-agent model.

The speed with which the chain signaling system can be learned

is much improved if the sender and receiver have pre-existing

signaling systems. They need not even be the same signaling system.

Sender and receiver can have different “languages” so that the

intermediary has to act as a “translator”, or signal transducer. One

could even consider an extreme case in which the sender and

receiver used the same tokens as signals but with opposite mean-

ings. “For example, sender’s and receiver’s strategies are:

SENDER RECEIVER

State 1) red red ) Act 2

State 2) blue blue) Act 1

A successful translator must learn to receive one signal and send

another, so that the chain leads to a successful outcome.
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Figure 3.4: Emergence of a signaling chain ex nihilo by reinforcement
learning.
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SENDER TRANSLATOR RECEIVER

State 1) red see red ) send blue blue)Act 1

State 2) blue see blue) send red red) Act 2

The translator’s learning problem is really quite simple, and she

can learn to complete the chain very quickly.”

In this signaling chain equilibrium, the sender’s signal to the

translator contains one bit of information about the state and the

translator’s signal to the receiver contains one bit of information

about the state. And on any play, the translator’s signal to the

receiver has the same informational content as the sender’s signal to

her. Information flows from sender through translator to receiver.

The receiver then acts just as she would have if she had observed the state

directly.

That is, of course, the ideal case. Some information can get lost

along the way because of noise or error.14

Using our notion of the content of a signal, there is no difficulty

in allowing for gradual degradation of content. Information can

flow through longer signaling chains and through more complex

signaling networks. Some informational content may get lost. This

may even be beneficial if extraneous information needs to be

filtered out. We will see how information from different sources

may be integrated in ways that include logical inference and com-

putation of truth values as special cases. Signaling networks of

different kinds are the locus of information transmission and pro-

cessing at all levels of biological and social organization. The study

of information processing in signaling networks is a new direction

for naturalistic epistemology.

14 Here I part company with Dretske 1981: 57–8.
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4

Evolution

“such things survived, being organized spontaneously in a

fitting way; whereas those which grew otherwise perished

and continue to perish. . . . ”

Aristotle, Physics1

Evolution

The ideas of natural selection and survival of the fittest existed

already in Greek philosophy. Aristotle is not describing his

own view—he believed in the fixity of the species—but rather

a rival theory according to which unsuccessful species go to extinc-

tion. Aristotle is referring to Empedocles of Sicily.2 Empedocles

was a statesman and a physician as well as a mystic, philosopher,

and poet. His theory was put forward in a long poem, On Nature.

Empedocles’ account of the origin of species begins with a

haphazard combination of parts into a great variety of organisms,

only the fittest of which survived. Empedocles influenced

Democritus, and both Empedocles and Democritus influenced

Lucretius. As Lucretius puts it in his own poem, On the Nature

of Things:

1 Aristotle, Physics II 8, 198b29.
2 There are secondary sources, such as Simplicius’ commentary on the foregoing passage

in Aristotle’s Physics, and Lucretius’ poem. See Sedley 2003b and Campbell 2003 on the

connections between Empedocles and Lucretius.



Perforce there perished many a stock, unable:

By propagation to forge a progeny.

Empedocles even had a theory of how traits are transmitted

from generation to generation. Small copies of organs form in the

male and female, and in reproduction some from the father and

some from the mother combine to form the new organism.

He thus has in hand a rudimentary theory of recombination.

Empedocles influenced Hippocrates (probably both directly

and through Democritus). Hippocrates’ theory of inheritance is

remarkably similar to that put forward by Darwin in The Variation

of Plants and Animals under Domestication nine years after the

publication of The Origin of Species.3 Darwin did not know about

Hippocrates at the time, but in a letter to William Ogle in 1868,

Darwin writes:

I thank you most sincerely for your letter, which is very interesting to me.

I wish I had known of these views of Hippocrates before I had published,

for they seem almost identical with mine—merely a change of terms—

and an application of them to classes of facts necessarily unknown to the

old philosopher. The whole case is a good illustration of how rarely

anything is new.

Darwin and Hippocrates were wrong about inheritance.

But Darwin was right about the broad outlines of the theory

of evolution. Traits are inherited by some unknown mechanism.

There is some process that produces natural variation in these

traits. The traits may affect the ability of the organism to reproduce,

and thus the average number of individuals bearing the

traits in the next generation. Therefore, those traits that enhance

reproductive success increase in frequency in the population,

and those that lead to reproductive success below the average

3 I owe my knowledge of Darwin’s theory to my colleague P. Kyle Stanford. See Stanford

2007.
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decrease in frequency. The three essential factors in Darwin’s

account are (i) natural variation, (ii) differential reproduction, and

(iii) inheritance.

Evolutionarily stable strategies

Darwinian processes lead to adaptation to a fixed environment, at

least where the genetic mechanism doesn’t get in the way.4 The

story is more complicated when fitness depends on the frequencies

of different types who interact with one another. Here the fitness

landscape may be constantly changing, along with the population

proportions. John Maynard Smith, following the lead of William

Hamilton,5 realized that this kind of interactive evolution is a

biological version of von Neumann and Morgenstern’s Theory of

Games.6

In 1973, John Maynard Smith and George Price introduced a

strengthening of the Nash equilibrium concept of game theory—

the concept of an evolutionarily stable strategy. The context was

the explanation of “limited war” in animal contests. Since hyper-

aggressive types, Hawks, defeat peaceful types, Doves, to win

resources, why don’t they take over the population? The general

answer is that selection here is frequency-dependent. If most of the

population is occupied by Hawks, they usually interact with each

other in fights that lead to serious injury or death. It is only good to

be a Hawk if there are enough Doves around to exploit.

Hawk-Dove interactions are modeled as a game. Payoffs for a

typical example are shown in the following table, with the numbers

4 As it does in the case of heterozygote superiority.

5 “In the way in which the success of a chosen sex ratio depends on choices made by the

co-parasitizing females, this problem resembles certain problems discussed in the ‘theory of

games.’ In the foregoing analysis a game-like element, of a kind, was present and made

necessary the use of the word unbeatable to describe the ratio finally established. This word

was applied in just the same sense in which it could be applied to the ‘minimax’ strategy of a

zero-sum two-person game” (Hamilton 1967).
6 von Neumann and Morgenstern 1944.
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being payoffs (in Darwinian fitness) of row strategy against column

strategy:

(In our evolutionary context, payoffs only depend on strategies, not

on who is row and who is column. The whole payoff table listing

row payoff, column payoff in each cell looks like this:

In what follows we will use the first, simpler form of giving

evolutionary games.)

It is evident that where you are meeting Hawks, it is better to be

a Dove (column 1) and where you are meeting Doves (column 2) it

is better to be a Hawk. Consequently, a population of All Hawks

cannot be evolutionarily stable in that in such a population a few

mutant Doves would do better than the natives. Likewise a popu-

lation of All Doves would be vulnerable to invasion by a few

Hawks.

An evolutionarily stable strategy in one such that if the whole

population played it, a few mutants would always do worse against

the resulting population (including the mutants) than the natives

would. Thus the mutants would fade away. If the population is

large and individuals are randomly paired to have an interaction

there is a simple test for evolutionary stability in terms of the payoffs

to the game. A strategy, S, is evolutionarily stable if for any other

strategy, M, either:

Hawk Dove

Hawk 0, 0 3, 1

Dove 1, 3 2, 2

Hawk Dove

Hawk 0 3

Dove 1 2
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(i) Fitness (S played against S) > Fitness (M played against S)

or:

(ii) Fitnesses are equal against S, but Fitness(S against M) >

Fitness(M against M)

This is how evolutionary stability is defined by Maynard Smith and

Price.7

For instance, in the Hawk-Dove game Hawk is not evolutionarily

stable because Fitness (Hawk against Hawk) is less than Fitness (Dove

against Hawk). Dove is not evolutionarily stable because Fitness

(Dove against Dove) is less than Fitness (Hawk against Dove).

The Maynard Smith–Price test is easily applied to other familiar

simple games. For instance, consider the Stag Hunt game. Players

can either hunt Stag or hunt Hare. Hunting Stag is a cooperative

enterprise. It fails if both players do not hunt Stag, but it pays off

well if they do. Hare hunting is a solitary enterprise. Hare hunters

do equally well if the other hunts Hare or Stag, but worse than

successful Stag hunters. The Stag Hunt has this kind of payoff

structure:

Applying the test of Maynard Smith and Price, we see that both

Stag and Hare are evolutionarily stable strategies. Stag against Hare

does worse than Hare against Hare; Hare against Stag does worse

than Stag against Stag. A population of each type is stable against

invasion by a few mutants of the other type.

For an example where there is exactly one evolutionarily stable

strategy, consider the most widely discussed game theory model in

the social sciences, the Prisoner’s Dilemma:

Hare Stag

Hare 3 3

Stag 0 4

7 If the first condition is satisfied, mutants are driven out rapidly. If the second condition

holds, mutants fade away more slowly.
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Defect is an evolutionarily stable strategy; cooperate is not.

But what about all the models that explain the evolution of

altruism, which is usually taken as cooperation in the Prisoner’s

Dilemma? All these accounts, in one way or another, explain the

evolution of cooperation by some correlation mechanism.8 Coop-

erators tend to meet cooperators; defectors tend to meet defectors.

Pairing is not random. If pairing is not random theMaynard Smith–

Price test of evolutionary stability is wrong. This is transparent if

correlation is perfect. Then a population of defectors could be

invaded by a few mutant cooperators. The cooperators meet each

other for a payoff of 3, while the native defectors have a payoff of 2.

Correlation can change everything.

Differential reproduction

Stability is really a dynamic concept. A rest state is strongly stable if all

states near to it are carried to it by the dynamics. You could think of

a marble at the bottom of a bowl. It is just stable if states near to it are

not carried away by the dynamics. Think of the marble sitting on

table top as being stable but not strongly stable. Otherwise it is

unstable, like a marble balanced at the top of an inverted bowl.

Maynard Smith and Price clearly have in mind something like

dynamic stability. Where is the dynamics?

To build a dynamic foundation for the notion of an evolution-

arily stable strategy, Taylor and Jonker introduced the replicator

dynamics.9 This is a model of differential reproduction in a large

Cooperate Defect

Cooperate 3 1

Defect 4 2

8 See Bergstrom 2002; Skyrms 1996, 2004.
9 Taylor and Jonker 1978.
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population, where types are inherited with complete fidelity. For

simplicity, Mendelian genetics is left out of the picture. Reproduc-

tion proceeds as if by cloning.

Replicator dynamics is driven by Darwinian fitness—expected

number of progeny. If the expected number of progeny of a type

is for instance two, then some individuals might have four and some

three and some one or zero. But in a large enough population these

differences will almost surely average out, and the average number

of progeny will equal the expectation. On average, you get what

you expect. This gives us replicator dynamics as introduced by

Taylor and Jonker to provide a dynamical foundation for evolu-

tionary game theory.

Suppose that reproduction takes place in discrete time—for

instance, every spring. What proportion xnew(S) of the new gener-

ation will play a given strategy, S? It is just the number who play S

in the new population divided by total number in the population.

The number who play S in the new population is equal to the total

number in the old population, N, multiplied by the proportion

who had strategy S, xold(S), multiplied by the average number for

offspring of those who had strategy S, Fitness(S). We have to divide

this by the total number of the new population which is just the

number of the old population, N, multiplied by the average number

of offspring throughout the old population, Average Fitness.

xnew¼ ½N xoldðSÞFitnessðSÞ�=½N Average Fitness�
N drops out and we get xnew from xold by multiplying by a

Darwinian success factor:

xnew¼ xold½FitnessðSÞ=Average Fitness�
This is discrete time replicator dynamics. There is an associated

(idealized) continuous time replicator dynamics that gives the rate

of change of population proportions, dx/dt at a point in time:

dx=dt ¼ x½FitnessðSÞ�Average Fitness�
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This is what Taylor and Jonker gave us as a simple model of

differential reproduction.

What about cultural evolution? We want to discuss dynamics of

signaling for cultural evolution as well as for biological evolution.

There are cases of each, and mixed cases, that are all of interest. We

would like a theory of cultural evolution to be more than just a

story about how culture evolved. In all honesty, a full theory at this

point is out of the question; the cognitive processes involved are

too various, complex and poorly understood. The best we can do is

to start with a simple basic model that we have some hope of

understanding.

One basic process is imitation. Suppose that individuals look

around them and see which behaviors or strategies are paying off

for others, and imitate those strategies with probability proportional

to their success. This process and a number of variations on it have

been analyzed.10 What we get, when the population is large and

chance fluctuations average out, is just our simple model of differ-

ential reproduction—the replicator dynamics.11

But what is the currency here, in which payoffs are measured? It

has to be whatever drives differential imitation. This has to be empir-

ically determined for the context of application. The specific applica-

tion of the theory derives its content from this determination. The

relevant payoffs for cultural evolution may or may not correlate well

with Darwinian fitness. In conditions of hardship, both may correlate

with eating well and surviving attacks of predators; in conditions of

affluence they may be decoupled. Even if the form of the dynamics is

the same for biological and cultural evolution the substantive conclu-

sions may be different. Care in interpretation is required.

The replicator dynamics may or may not lead to a dynamical

equilibrium (a rest point of the dynamics). If individuals are paired

at random and there are just two strategies, it must do so. We can

10 Björnerstedt and Weibull 1995; Weibull 1995; Schlag 1998.
11 Or some slight variant. This route to the replicator dynamics is even more straightfor-

ward, because there is no diploid genetics being suppressed.
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visualize the situation by plotting the proportion of one of the

strategies on an interval from 0 to 1. We could have:

(i) the dynamics carrying one strategy to fixation, no matter

what the interior starting point:

∘!!!!!!!!!!!!!!!�

(ii) the dynamics carrying the population to a mixed state, no

matter what the starting point:

∘!!!!!!�         ∘

(iii) the dynamics carrying one or the other strategy to fixation,

depending on the starting point:

�          ∘!!!!!�

(iv) the dynamics not moving at all:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Case (i) is exemplified by the Prisoner’s Dilemma. All cooperate is a

rest point of the dynamics because defectors are all extinct.12 But it

is dynamically unstable. We mark an unstable rest point with a

hollow point. All other points are carried to All Defect, which is

dynamically strongly stable. We mark a strongly stable rest point

with a filled circle. With Hawk-Dove, we have case (ii). All Hawk

and All Dove are dynamically unstable. The dynamically stable

equilibrium is a mixed (or polymorphic) state of the population

with some Hawks and some Doves. The Stag Hunt is case (iii).

Here the polymorphic rest state is an unstable “knife-edge.” Any

movement off it carries the population to one of the strongly stable

equilibria—All Stag or All Hare.

12 Differential reproduction by itself does not introduce new types.
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For case (iv) consider the game of inconsequential actions. Here the

available actions have no payoff consequences whatever. I believe

that much of life has this structure.

Replicator dynamics does not move any point. (We can’t really

draw it.) All points are Stable in that nearby points stay nearby, but

no state is strongly stable.

The Red Queen

When we have three strategies, however, replicator dynamics may

not lead to equilibrium at all! Consider the familiar game of rock-

scissors-paper. Rock breaks scissors, scissors cuts paper, paper covers

rock, so we get the following sort of payoffs:

Rock-scissors-paper

This structure is also found outside children’s games. Christof

Hauert, Silvia de Monte, Josef Hofbauer, and Karl Sigmund find

rock-scissors-paper structure in a social dilemma with the possibili-

ty of opting out.13

The pure social dilemma is a generalization of the Prisoner’s

Dilemma to many players. Individuals can either choose to con-

tribute to the public good or to free ride. Contributions are

Do This Do That

Do This 0 0

Do That 0 0

R S P

R 1 2 0

S 0 1 2

P 2 0 1

13 Hauert et al. 2002.
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multiplied by the synergy of the joint project, and the joint public

good is divided among everyone. If everyone contributes everyone

does well. But the multiplier is smaller than the group number, so

your dollar contribution gets you personally less than a dollar in

return although it can get the group much more. Thus, whatever

others do, it is in an agent’s own selfish interest to free-ride and

share the benefits of others’ contributions. If everyone free rides,

the public good project fails. There is nothing to distribute, and all

do very poorly. Thus we have the n-Person Prisoner’s dilemma. To

this basic setup is added the possibility of opting out and being a

loner. Loners are less successful than those in cooperative groups,

but more successful than those in failed public-goods projects. In a

population of cooperators, free-riders do better than natives. In a

population of free-riders, loners do better. In a population of

loners, cooperators do better.

Barry Sinervo and Curtis Lively find rock-scissors-paper struc-

ture in mating strategies of side-blotched lizards in California.14

There are three types of males, which exhibit different coloration.

Orange-throated males are very aggressive and guard large terri-

tories. Blue-throated males guard smaller territories and are able to

guard their mates. Yellow-throated males resemble females, and

mate with females on the sly. In a population of mate-guarding blue

throats, the ultra-dominant orange throats do better. But they can

be invaded by yellow-throated sneakers. And these can be invaded

in turn by the blue throats. Field studies confirm the presence of

cycles.

Benjamin Kirkup and Margaret Riley find rock-paper-scissors

being played by bacteria in the gut of a living mouse.15One strain of

E.coli both produces a poison and maintains immunity to this

poison. There are two metabolic costs, one for the poison and

one for the immunity, which reduce reproductive potential.

These poisoners beat normal E.coli, which are not immune, in the

14 Sinervo and Lively 1996.
15 Kirkup and Riley 2004.
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spatial interactions in the gut. A third strain maintains immunity to

the poison, but does not produce it. It free-rides, so to speak, on the

spite of the poisoners.

These free-riders flourish in a population of poisoners, because of

the lower metabolic load. But in a population of such free-riders,

the normals will do best. Here there is no poison, and the cost of

maintaining immunity is a drag on the free riders. This rock-

scissors–paper type of interaction structure explains the mainte-

nance of all three types in the wild. As the Red Queen said to

Alice, “Now, here, you see, it takes all the running you can do, to keep in

the same place.”

The replicator dynamics for rock-scissors-paper is shown in

figure 4.1.

Rock-scissors-paper has four rest points (or equilibria) of the

replicator dynamics. The three possible pure populations (all rock,

all scissors, all paper) are all dynamically unstable. The other equilib-

rium is the mixed state where one-third of the population plays

each strategy. This is stable, since points near it stay near it, but not

strongly stable. The equilibria are not so important here. No initial

population state that is not already an equilibrium converges to any

of the equilibria.

x

z

y

11

1

Figure 4.1: Cycles in rock-scissors-paper.
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This changes if we modify the payoffs slightly:16

Rock-scissors-paper II

For small positive e, trajectories of the replicator dynamics spiral

inward to the point where the population proportions are equal.

This equilibrium has changed character. It is not only stable; it is

strongly stable. Population states near it get carried to it. More

impressively, it is globally stable. Every state in which none of the

strategies is extinct converges to it.

The example illustrates another concept that will be important

to us. The tiniest change in the dynamics changed the

equilibrium structure radically. (A negative e rather than a positive

one would have caused the trajectories to spiral outward,

changing the central equilibrium from stable to unstable.) Our

original rock-scissors-paper game with replicator dynamics is

said to be structurally unstable. In a structurally unstable situation,

small local changes in the rates of change of population

proportions can lead to a radically different global dynamic struc-

ture. Our game of inconsequential actions was also structurally

unstable. The littlest consequence could change everything.

Although structural instability in the replicator dynamics is rare in

the space of games in general, in signaling games it happens all the

time!

R S P

R 1-e 2 0

S 0 1-e 2

P 2 0 1-e

16 Zeeman 1980; Hofbauer and Sigmund 1998.
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Natural variation

Let us now add Darwin’s third principle—natural variation. In a

Mendelian setting, sexual reproduction adds a lot of natural varia-

tion through genetic recombination of contributions from both

parents—just as Empedocles shrewdly hypothesized. But in line

with our minimalist approach so far, preserving compatibility with

both biological and cultural evolution, we will just add mutation.

With high probability types or strategies are inherited, but with

some small probability any type may mutate into any other. On the

cultural side these mutations may be viewed as imperfect imitation,

leavened by error, which keeps all strategies in play and prevents an

absolutely monomorphic culture. In principle it might be easier for

a given type to mutate into a second than into a third. However, we

will concentrate on the case of uniform mutation. Every type has

the same probability of mutating into any other type, so there is

only one mutation rate. We again assume a large population, so

chance fluctuations average out. This gives us replicator-mutator

dynamics.17

Those population states that were dynamic equilibria only by

virtue of all other types being extinct do not survive mutation.

Consider one population playing Prisoner’s Dilemma:

With replicator dynamics there are two equilibria, All Cooperate and

All Defect. The former is unstable, since introduction of any defec-

tors would lead to them taking over the population. With replica-

tor-mutator dynamics, defectors are automatically introduced by

mutation and only one equilibrium survives. This is the All Defect

Cooperate Defect

Cooperate 3 1

Defect 4 2

17 Introduced by Hadeler 1981 and analyzed by Hofbauer 1985.
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equilibrium perturbed slightly by mutation. For a small mutation

rate it is an Almost-All Defect equilibrium.

Let us return to our original rock-scissors-paper game. Instead of

changing the payoffs a little, as we did earlier, we can keep the

payoffs the same but introduce mutation. We change the dynamics

to replicator-mutator with a small mutation rate. Since we are

starting with a structurally unstable situation, we expect that this

small change might have large consequences. Indeed, it is so. As

before, all cycles vanish and the only surviving equilibrium is the

population state where each of rock, scissors, and paper is played

with probability 1/3. This is a global attractor—all trajectories lead

to it. Since mutants from more frequent strategies to less frequent

ones are more numerous than those in the converse direction,

mutation gives the dynamics a little nudge in the direction of

equality. That is all it takes to destabilize the cycles and turn them

into inward spirals.

Rock-scissors-paper has a lot to teach us about evolutionary

games. The first big lesson is the importance of dynamical analysis.

If we look for evolutionarily stable strategies—strategies that if

established could repel any invaders—there aren’t any. If we con-

centrate on equilibrium analysis, we miss the cycles. The second big

lesson is the importance of attention to structural stability. If the

model is structurally unstable, a small change in the model may

make a big change in its dynamics.
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5

Evolution in Lewis Signaling
Games

“The emergence of meaning is a moral certainty”

Brian Skyrms, Evolution of the Social Contract

“Something is morally certain if its probability comes so

close to complete certainty that the difference cannot be

perceived.”

Jacob Bernoulli, The Art of Conjecture

That was the bold claim I made in 1996 about the evolution of

signaling systems. Signaling systems had been shown to be the only

evolutionarily stable strategies in n-state, n-signal, (and here) n-act

signaling games. They were the only attractors in the replicator

dynamics. In simple cases, like those discussed in Chapter 1, it was

clear why almost every possible starting point was carried to a

signaling system. How far do these positive results generalize?

The good news

Consider the two-state, two-signal, two-act, signaling game where

nature chooses the states with equal probability. In Chapter 1, we

restricted the strategies to those that might be used by those who

have signaling in mind. The sender sent a different signal in each

state. The receiver picked a different act for each signal. They knew



at the onset that states and signals were important, they just hadn’t

settled on a signaling system. This is making things too easy. Let’s

put in all possible strategies.

Senders now have two additional strategies: Always send signal 1,

always send signal 2. Receivers also have two additional strategies:

Always do act 1, always do act 2.

The sender’s strategies ignore the state and the receiver’s strategies

ignore the signal.Why not?Wemay have a population of senders and

a population of receivers. In this case there are four possible strategies

represented in each population. Alternatively, there may be a single

population where an individual is sometimes in the role of sender and

sometimes in the role of receiver. A strategy for an individual specifies

what to do when in the role of sender and what to do in the role of

receiver. There are 16 possible strategies. What happens?

Everything still works fine. Signaling always evolves, both in

one-population and two-population contexts. We can’t draw pic-

tures with all the strategies included, but it is still possible to

establish that almost every initial point is carried to a signaling

system.1 It can be shown that average payoff increases along every

trajectory of the dynamics. Then there can’t be cycles like those in

rock-scissors-paper. Evolutionary dynamics has to go to an equi-

librium. But there are lots of new equilibria when we include all

strategies. Notably, there are pooling equilibria, in which the sender

ignores the state and the receiver ignores the signal. However, it

can be shown that all the equilibria other than signaling systems are

dynamically unstable. Evolution won’t hit them. There are no

pictures, but the story is just like that in Chapter 1.

Bad news: states with unequal probabilities

The foregoing is in the context where nature chooses states with

equal probability. That is the simplest case, but there is no reason

1 Huttegger 2007a; Hofbauer and Huttegger 2008.
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why nature may not choose states with unequal probability: 60%–

40%, 90%–10%, or 99%–1%. Then the pooling equilibria take the

form where senders transmit no information and receivers ignore

the signal and always do the act suited to the most likely state.

If the more likely state is very likely, players in such an equilibri-

um may do quite well. We can no longer make the case that the

mutant signalers will do as well against the natives as the natives do

against each other. If both signals are sent at random (but ignored by

receivers) in the native population, then mutants pursuing a signal-

ing system strategy will be led to do the wrong act half the time,

when they receive a native’s signal. They will do perfectly against

each other, but most of their interactions are with natives. So they

make lots of mistakes, while the natives usually do the right thing.

They will do worse than the natives.

For a two-population setting, consider a case where state 1 occurs

90% of the time and state 2 10%. Then a receiver who always does

act 1, no matter what the signal, gains average payoff of .9. He does

the right act for the state 90% of the time andmisses 10% of the time.

So he does reasonably well without any information transmission.

Consider such a population of receivers paired with a polymorphic

population of senders, half of whom always send signal 1 and half of

whom always send signal 2. Everyone gets an average payoff of .9.

Introduce a few senders who discriminate states, and they will do no

better and no worse than the natives. But if we introduce a few

receivers who discriminate between signals to coordinate with the

few senders, they will do very badly against the natives. Against the

natives they will get an average payoff of only .5. That was good

enough to get a foot in the door when the states were equiprobable

and the natives were making .5, but it is not good enough when the

states are not equiprobable. Now evolutionary dynamics will some-

times hit signaling systems and sometimes hit pooling equilibria,

with the likelihood of the latter increasing with the disparity in

probability between the states. The bottom line in both the one-

and two-population cases is that evolution of signaling is no longer

guaranteed. How serious is this problem?
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Evolution can lead to pooling equilibria where no information is

transmittedwhenever states have unequal probability. It can also lead

to signaling systems. It is more likely that we get pooling the larger

the disparity in probabilities of the states, but the impact on the

welfare of the players is smaller.

Some good news

Our pooling equilibria, where no information is transferred are

characterized by (i) the receivers ignoring the signal and always

doing the right thing for the most probable state and senders

ignoring the state, either by (a) always sending signal 1 or (b) always

sending signal 2. Any mix of senders of types (a) and (b) gives us

a pooling equilibrium. Thus there is a line of such equilibria,

corresponding to the proportion of the two types of sender. The

endpoints, representing all one type of sender or all the other type,

are unstable. Each endpoint can be destabilized by a few signaling

system mutants, of an appropriate kind. But evolution can lead to

any of the other points corresponding to a mixed population of

different types of senders.

A line of equilibria is structurally unstable, like the concentric

orbits in the rock-scissors-paper example of the last chapter. A

small change in the dynamics can make a big change in the set of

equilibria. So far the dynamics have been pure differential repro-

duction. We can modify the dynamics a little bit by putting in a

little natural variation in the form of mutation.

The analysis for two populations has been carried out by Josef

Hofbauer and Simon Huttegger. The replicator dynamics is re-

placed with its natural generalization, the replicator-mutator dynam-

ics.2 Each generation reproduces according to replicator dynamics

but (1-e) of the progeny of each type breed true and e of the

progeny mutate to all types with equal probability. (Self-mutation

2 Hadeler 1981; Hofbauer 1985.
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is allowed.) Taking the continuous time limit gives the replicator-

mutator dynamics.

A little uniform mutation (no matter how little) collapses the line

of pooling equilibria to a single point. (This is intuitively reason-

able. If the receivers are disregarding the signals, there is no selec-

tion pressure on the senders. If one type of sender, (a) or (b), is more

numerous, more mutate out than mutate in.) The big question

concerns the character of this one point. Is it an attractor that pulls

nearby states to it? Is it dynamically unstable, so that for all practical

purposes we needn’t worry about it?

It depends. For states whose probabilities are not too unequal,

this pooling point is unstable. Then our original positive result is

restored. Signaling always evolves! That’s the good news. But for

when one state is much more probable than the other, the pooling

point is an attractor. Signaling sometimes evolves, sometimes not.

That’s the not so good news. For equal and small mutation rates for

both senders and receivers, Hofbauer and Huttegger calculate the

probability where the switch takes place.3 It is between .78 and .79.

That’s not too bad. Up to probability 3/4, a little mutation

assures that almost all initial points evolve to signaling systems.

Things are even more favorable, if the receivers have a higher

mutation rate than the senders. If receivers experiment twice as

often as senders, paradise is regained. The bad equilibrium with no

information transfer is always dynamically unstable, for any (posi-

tive) state probabilities. But we cannot assume that such favorable

mutation rates are always in place.

In addition,we should notice that these are results for payoffs that are

all 0 for failures and all 1 for successes. For very infrequent states where

the payoffs are much more important—such as the presence of a

predator—the disparity in payoffs can balance the disparity in prob-

abilities. Predators may be rare, but it does not pay to disregard them.

This consideration can restore almost sure evolution of signaling

for rare events.

3 Technically, this is called a “bifurcation.”
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More bad news: partial pooling

What happens when we move to three states, three signals, and three

acts?We go back to the favorable assumption that all states are chosen

with equal probability. Nevertheless, a whole new class of equilibria

appears. Suppose that a sender sends signal 1 in both states 1 and 2, and

in state 3 sends either signal 2 or 3 with probabilities x and (1–x)

respectively. And suppose that the receiver, on getting signals 2 or 3

always does act 3, but on getting signal 1 does either act 1 or act 2with

probabilities y and (1-y) respectively. This is shown in figure 5.1

For any combination of values of x and y as population propor-

tions, including 0 and 1, we have a population state that is a

dynamic equilibrium. We thus have an infinite set of equilibrium

components. Considering x going from 0 to 1 and y going from

0 to 1, we can visualize this set as a square of equilibria. These

equilibria pool states 1 and 2 together, but do not pool all states

together—so they are called partial pooling equilibria.4 Because

information is imperfectly transmitted, sender and receiver succeed

2/3 of the time. In comparison, total pooling would give a payoff of

only 1/3, and perfect signaling would give a payoff of 1.

3 by 3 by 3

States Signals Acts

1 1 1

2

3

2

3

2

3

x

1-x

y

1-y

Figure 5.1: Partial pooling equilibria.

4 There is likewise a square of partial pooling equilibria that lumps states 2 and 3 together,
and one that pools states 1 and 3.
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In total pooling equilibria, where all states are lumped together,

no information is transmitted. In partial pooling equilibria, some

information is transmitted, but not as much as would be in a

signaling system.

If we run simulations of evolutionary dynamics in 3 state, 3 signal,

3 act Lewis signaling games with equiprobable states, we never

observe total pooling equilibria, but we do see partial pooling

between 4% and 5% of the time.5 How is this possible? Are these

simulations to be trusted?

There are four possible pairs of pure populations corresponding

to values of 0 or 1 for x and y. Each of these population states is a

dynamically unstable equilibrium.6 But mixed populations,

corresponding to non-extreme values of x and y, are all stable

equilibria. Notice that in any of these states, signaling-system in-

vaders would do worse against the natives than the natives do

against themselves. Likewise for any other invaders. You can go

through all of the other possible other sender and receiver strate-

gies, and none of them do as well against a mixed pooling popula-

tion as the poolers do against themselves. If you are close enough to

the interior of the plane of partial pooling equilibria, the dynamics

will lead you right into it. The simulations were a reliable guide.

A non-trivial set of population proportions evolves by replicator

dynamics to partial pooling rather than signaling systems.7 In a

perfectly ordinary Lewis signaling game, evolution can sometimes

spontaneously create the synonyms and information bottlenecks

that we artificially postulated in Chapter 1!8

5 Simulations using discrete time replicator dynamics by Kevin Zollman led to partial

pooling in 4.7% of the trials, and to signaling systems the rest of the time.

6 The instability stems from the fact that if a small number of senders and receivers that

form the right signaling system were added they would out-compete the natives. They

would do equally well against the natives, but better against each other. But each of these

partial-pooling type populations requires a different signaling system to destabilize it, and

each of these signaling systems does badly against the other type of partial-pooling.

7 There are proofs of this in Huttegger 2007a and in Pawlowitsch 2008.
8 Signals 2 and 3 function as synonyms, leaving only one signal for the remaining two

states and two acts.
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Mutation one more time

The set of partial pooling equilibria in the foregoing discussion is

again an indication of structural instability. As before, let us try a little

mutation. It is hard to do a full analysis of this game, but indications

are that a little mutation destroys partial pooling and always gets us

signaling. Partial pooling squares collapse to single points and move

a little bit inward to accommodate a few mutants of other types.

Although these equilibria of partial information transfer survive,

they are dynamically unstable. Perturbed signaling systems, in con-

trast, are asymptotically stable attractors. Simulations using discrete-

time replicator-mutator dynamics with both 1% and 0.1%mutation

rates found that the system always converged to a (perturbed)

signaling system equilibrium.

Correlation

In the last chapter, assortment of encounters made a cameo appear-

ance. Assortment of encounters—that is, positive correlation of

types in encounters—plays the major role in explanations of the

evolution of altruism. Altruism, modeled as cooperation in the

Prisoner’s Dilemma, cannot evolve with random pairing. But it

can when there is sufficient positive correlation of types, so that

cooperators tend to meet cooperators and defectors tend to meet

defectors.9Mechanisms exist in nature to promote an assortment of

encounters. There is no reason to believe that they should operate

only in Prisoner’s Dilemma situations.

They can make a difference in evolution of signaling. Let us go

back to a Lewis signaling game with two states, two signals, and two

acts, where nature chooses state 1with probability .2 and state 2with

9 See Hamilton 1964; Skyrms 1996; Bergstrom 2002.
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probability .8. Here we consider a one-population model, in which

nature assigns roles of sender or receiver on flip of a fair coin. We

focus on four strategies, written as a vector whose components are:

signal sent in state 1, signal sent in state 2, act done after signal 1, act

done after signal 2.

s1¼<1, 2, 1, 2>
s2¼<2, 1, 2, 1>
s3¼<1, 1, 2, 2>
s4¼<2, 2, 2, 2>

The first two strategies are signaling systems, the others are pooling

strategies. (Other strategies neglected here are losers that rapidly go

extinct.)

Consider the following model of assortment (due originally to

Sewall Wright):

Probabilityðsi meets siÞ ¼ pðsiÞ þ e½1� pðsiÞ�
Probabilityðsi meets different sjÞ ¼ pðsjÞ � e pðsjÞ

where p denotes population proportion. The probability of en-

countering your own type is augmented and that of encountering a

different type is decremented. If e¼1, assortment is perfect; if e¼0
encounters are random.

Now consider the point, z, in the line of pooling equilibria

where p(s3)¼p(s4)¼.5.
This point is stable. (It is, in fact, the point on the line with

strongest resistance to invasion by signalers.) We feed in assortment.

Between e¼.4 and e¼.5, z changes from being stable to unstable.

This happens at about e¼.45. If probabilities of states are more

unequal, it takes greater correlation to destabilize pooling and

guarantee the evolution of signaling. This is shown in figure 5.2.

But if neither state is certain, there is always some degree of

correlation that will do the trick.
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This shows the power of correlation in the abstract. It remains to

investigate the effect of specific correlation devices on the evolu-

tion of signaling.10

Eating crow

Even after all the good news is in, there remains a real possibility of

evolution falling short of a signaling system. The emergence of

a signaling system is not always a moral certainty. I was wrong.

But signaling can still often emerge spontaneously, even though

perfect signaling is not guaranteed to always emerge. Democritus is

still right, but we can begin to see the nuance in how he is right.

10 One correlation mechanism found widely in nature is local interaction in space, or in

some social network structure. Wagner 2009 shows how network topology influences

evolution of signaling systems.
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Figure 5.2: Assortment destabilizes pooling.
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6

Deception

“I can by no means will that lying should be a universal law.

For with such a law there would be no promises at all, since it

would be in vain to allege my intention in regard to my future

actions to those who would not believe this allegation . . . ”

Immanuel Kant, Fundamental Principles

of the Metaphysics of Morals1

“the truth, the whole truth and nothing but the truth.”

Traditional in English Common Law

Is deception possible?

It seems like a silly question. Any theory that says that deception is

impossible is a non-starter. Deception is widespread enough in

human affairs, but it is not confined to our own species. Consider

the case of a low-ranking male vervet monkey, Kitui, reported by

Cheney and Seyfarth.2 In intergroup encounters, Kitui gave false

leopard alarm calls when a new male attempted to transfer to his

group. But both groups became excited, ran up trees, and the

1 Here is the full quotation, in the translation of Thomas Kingsmill Abbott: “I can by no

means will that lying should be a universal law. For with such a law there would be no

promises at all, since it would be in vain to allege my intention in regard to my future actions

to those who would not believe this allegation, or if they over hastily did so, would pay me

back in my own coin. Hence my maxim, as soon as it should be made a universal law, would

necessarily destroy itself ” (Kant 1785).
2 Cheney and Seyfarth 1990.



transfer never took place. You might wonder whether Kitui was

just nervous, terribly afraid of leopards and prone to mistakes. If

Kitui were just making mistakes, then his alarm calls were misinfor-

mation, but not deception. They were misinformation because the

state was no leopard, and the probability of a leopard being present

goes up given a leopard alarm call. Recalling Chapter 3, there is a

positive quantity of information in the signal because it moves the

probabilities of the state, but this use of the signal is misinformation

because it decreases the probability of the true state and increases

the probability of the false state. We suspect, however, that these

are not simply mistakes because Kitui does this repeatedly and

the results are to his own interest and against the interests of the

receivers. If so, we appear to have a case of deception.

Nevertheless, biologists may worry about the stability of signal-

ing systems in the presence of deception and philosophers some-

times wonder whether deception even makes sense in the context

of a naturalistic theory of meaning. The philosophers, as usual, are

more skeptical. According to their argument, a signal simply

“means” conditions are such as to cause this signal to be sent. A signal

cannot be false. Deception is impossible.

Systematic deception

One might be tempted to treat Kitui as an anomaly, an individual

with non-standard payoffs who happens to wander into a well-

established signaling system. If so, not much more needs to be said.

But the use of systematic deceptive alarm calls has been documen-

ted in many species, both to drive others away from a newly

discovered food source and—like Kitui—to deter sexual rivals.3

These include birds and squirrels, who pose less of a temptation to

anthropomorphism than monkeys. For two species of birds, great

3 See Searcy and Nowicki 2005: ch. 6 for review and references.
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tits and shrike tanagers, frequency of false alarm signals seems to be

greater than that of true ones.

Or, if the temptation to imagine a mental life is still there with

birds and squirrels, consider a somewhat different case of deception.

Fireflies use their light for sexual signaling. In the western hemi-

sphere, males fly over meadows, flashing a signal. If a female on the

ground gives the proper sort of answering flashes, the male descends

and they mate. The flashing “code” is species-specific. Females and

males in general use and respond to the pattern of flashes only of

their own species.

There is, however, an exception. A female firefly of the genus

Photuris, when she observes a male of the genus Photinus, may

mimic the female signals of the male’s species, lure him in, and eat

him. She gets not only a nice meal, but also some useful protective

chemicals that she cannot get in any other way. One species,

Photuris versicolor, is a remarkably accomplished mimic—capable

of sending the appropriate flash patterns of 11 Photinus species.

I would say that this qualifies as deception, wouldn’t you?

Let us think about this, not in terms of some propositional

content imputed to the signal, but in terms of its informational

content. We consider the probabilities of the states, and the prob-

abilities of the states conditional on the signal being sent.4 In the

case of the false alarm call, the probability of there being a predator

present conditional on the alarm call being sent is higher than the

unconditional probability. It is not equal to one, and may not even

be close to one, due to what we have called systematic deception.

But the signal still raises this probability.

If the signal is sent in a situation where the sender observes no

predator, it is misinformation. If, in addition, it is systematically sent

to the benefit of the sender and the detriment of the receiver, it is

deception.5

4 As in Chapter 3.
5 One could argue over whether the clause about the detriment of the receiver should be

included. Searcy and Nowicki 2005: 5 leave it out:
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Likewise, the sexual predator Photuris sends a signal that raises the

probability of the state of a sexually receptive female being present

when that is not the true state. This is just a question of actual

frequencies. There is a frequency of receptive females being present

and there is a frequency of receptive females in situations where the

mating signal is given. The second frequency is higher than the first.

As a consequence, the receiving males are led to actions that they

would not take if they could directly observe the state.

The signal carries misinformation.

Signals carrying misinformation might sometimes result from

mistakes. For instance, we might suppose that occasionally a sexu-

ally receptive female of another species gets her flash pattern mixed

up and sends the appropriate signal for Photinus. But Photuris is not

making a mistake; she is getting dinner. This is a systematic use of

misinformation to manipulate the behavior of the receiver for the

advantage of the sender.

This is deception.

Half-truth

But the firefly mating signal also increases the probability of the

presence of a predator. Its informational content is mixed. Let us

look at the matter a little more closely. When a cruising Photinus

we will define deception as occurring when:

1. A receiver registers something Y from a signaler;

2. The receiver responds in such a way that
a. Benefits the signaler and
b. Is appropriate if Y means X; and

3. It is not true that X is the case.

Maynard Smith and Harper 2003: 86 put it in.
I do not think that much hangs on the choice; we could talk about strong and weak

deception.What is important is that our definition is information-based, rather than depend-

ing on imputed propositional content that is false. Imputation of propositional content to

animal signals is always problematic. It might make a limited amount of sense in a favorable

equilibrium. The information-based concept, however, always makes sense—both in and

out of equilibrium.
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looks for an opportunity to mate, nature chooses among three

states: sexually receptive Photinus present, hungry Photuris present,

nothing happening. Photinus can receive one of two signals, the

mating signal or the null signal (that is, no real signal).

This is a little different from the models we have considered, but

the same way of thinking of information about states can be

applied. There is a baseline frequency for each of the states. There

are frequencies when the signal is sent. We can assume for simplici-

ty that in the first two states the mating signal is always sent and the

third always leads to the null signal. Then the mating signal being

sent raises the probability of both kinds of partner, but leaves the

ratio unchanged. If you want to think of it as saying “I am the kind

who sends this signal,” you can think of it as telling the truth. But it

is only a half-truth.

When sent by the predator it contains misinformation in that it

raises the probability that a sexually receptive partner is available.

When sent by the potential mate, it also contains misinformation,

because it raises the probability of a predator. But only the first

case counts as deception because only in this case does the sender

profit at the expense of the receiver. A half-truth can be a form of

deception.

Where deception is impossible

Let’s just change the payoff structure from common interest to

diametrically opposed interest in our simplest signaling game. Na-

ture chooses between two states with equal probability; the sender

chooses between two signals; the receiver chooses between two

acts. But now the receiver gets paid when the act matches the state,

and the sender gets paid when it doesn’t.

The only equilibria in this game are pooling equilibria. If the

signals gave the receiver information about the state, the receiver

could exploit the sender. If the receiver altered her behavior in

response to the signal she could be manipulated by the sender.
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Deception is impossible because the signals carry no information

at all. The probability of each state (and of each act) being given a

signal is equal to its unconditional probability. The informational

content vectors are all full of zeros; the quantity of information

about states (and about acts) in each signal is zero; the information

flow is nonexistent.

That is only in equilibrium. A lot of life is lived out of equilibri-

um. If receivers tend to do act one for signal one and act two for

signal two, then senders can profit by deceiving receivers. If senders

tend to send signal two in state 1 and conversely, then receivers can

improve their lot by learning to read the information in senders’

signals—that is, by adjusting their strategies to turn misinformation

into useful information. Deception is one of the forces that drive

the system to equilibrium.

That is, if the system goes to equilibrium. It may not. Consider

our game with strategies restricted to signaling strategies. The

sender sends a different signal in each state, and the receiver does

a different act for each signal. There are now only two sender’s

strategies and two receiver’s strategies. Payoffs are:

With two populations, the population proportions live on a square,

with the x axis being the proportion of receivers playing their

strategy two, and the y axis being the proportion of senders playing

their strategy 2. With the replicator dynamics we see cycles, rather

than convergence to equilibrium, as shown in figure 6.1.

In the top half of the square the sender strategy 1 conveys

misinformation. In each state, its signals move the probability of

the state off 1/2 in the wrong direction because of the prevalence

in sender strategy 2. Likewise, in the bottom half of the

Receiver 1 Receiver 2

Sender 2 1, 0 0, 1

Sender 1 0, 1 1, 0
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square, strategy 2 conveys misinformation. Sender strategy 1
profits at the expense of receivers, on average, in the right half

of the square and sender strategy 2 is systematically profitable

in the left half. So, according to our definition, deception

predominates in the upper right and lower left quadrants.

Sender’s deception and receiver’s adaptations drive the cycle

round and round. (The same phenomenon can be realized in

a single population, where the payoffs have a rock-scissors-

paper structure.)

Prevalence of deception

Consider standard sender-receiver signaling games with all sorts of

payoffs. Cases of pure common interest and of pure conflict are the

extremes. As the number of states, signals and acts grows, and as

dyadic interactions give way to networks, the pure extreme cases

become less and less likely. What is typical is a case of mixed

interests, in some combination of partial alignment and partial

divergence. From purely abstract considerations, what we should

Figure 6.1: Cycles with opposed interests.
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expect to predominate is some combination of information and

misinformation.6

That is what we find. In all kinds of signaling systems in nature

there is information transmission which is sufficient to maintain

signaling, but we also find misinformation and even deception.

After an extensive review of models of animal signals and of the

relevant empirical evidence bearing on these models, Searcy and

Nowicki conclude “Evidence supporting the occurrence of decep-

tion has been found in all the major categories of signaling systems

that we have discussed, including begging, alarming, mating signals

and aggressive signals.”7

How is deception possible?

We have been able to characterize misinformation and deception in

behavioral terms. Despite some misgivings in the philosophical

literature,8 misinformation is straightforward. If receipt of a signal

moves probabilities of states it contains information about the state.

If it moves the probability of a state in the wrong direction—either

by diminishing the probability of the state in which it is sent, or

raising the probability of a state other than the one in which it is

sent—then it is misleading information, or misinformation. If misin-

formation is sent systematically and benefits the sender at the

expense of the receiver, we will not shrink from following the

biological literature in calling it deception.

In certain cases of diametrically opposed interests it is impossible,

as Kant says, for everyone to practice deception, at least in equilib-

rium. That is because, in equilibrium, there is no information at all

in the signals. In a game with partially aligned interests it may be in

the interest of a sender to restrict information to manipulate a

6 See Crawford and Sobel 1982.
7 Searcy and Nowicki 2005: 223.
8 For a review of the philosophical literature on this subject and commentary see Godfrey-

Smith 1989.
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receiver and it may nevertheless be in the interest of a receiver to

act on the information that she gets. Consider the following payoffs

(for equiprobable states):

If everyone uses the strategy, If sender send signal 1 in states 1 and 2 and

signal 2 in state 3; if receiver do act 3 on receipt of signal 1 and act 2 on

receipt of signal, 2 the situation is an equilibrium. In this equilibrium,

the occupant of the sender’s role always manipulates the occupant

of the receiver’s role. In state one, the sender’s signal is a half-truth

in that it raises the probability of state 2. In state 2 the sender’s signal

is a half-truth in that it raises the probability of state 1. These half-

truths induce the receiver to choose act 3 in states 1 and 2, whereas

accurate knowledge of the state would lead her to choose either act

1 or act 2. The manipulation leads to a greater payoff for the sender

and a smaller one for the receiver. In this sense, universal deception

in equilibrium is indeed possible.

It might be objected that this is not universal deception because if

nature chooses state 3, the signal sent is not deceptive. We have

universal strategies that incorporate deception, but not universal

deception. The objection can be met by simply expanding the

game so there is an equilibrium in which state 3 is pooled with a

new state 4:

Act 1 Act 2 Act 3 Act 4

State 1 2, 10 0, 0 10, 8 0, 0

State 2 0, 0 2, 10 10, 8 0, 0

State 3 2, 10 0, 0 0, 0 10, 8

State 4 0, 0 2, 10 0, 0 10, 8

Act 1 Act 2 Act 3

State 1 2, 10 0, 0 10, 8

State 2 0, 0 2, 10 10, 8

State 3 0, 0 10, 10 0, 0
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Now it would be in the receiver’s best advantage to do act 1 in

states 1 and 3 and act 2 in states 2 and 4. But there is an equilibrium

in which the sender sends one signal in both states 1 and 2 and

another in both states 3 and 4, and the receiver does act 3 upon

receiving the first signal and act 4 on receiving the second. Given

the information supplied, the receiver behaves optimally, preferring

a sure payoff of 8 to a 50% chance of 10. The sender has manipu-

lated the receiver to assure herself a payoff of 10. Every signal sent in

this equilibrium is deceptive.

Universal deception in this strong sense is not only logically

consistent in the sense of involving no contradiction, but also

evolutionarily consistent in the sense of being an equilibrium.

I would remind those who would insist that deception is a matter

of intentions, that the equilibrium is also consistent with rational choice.

Sender and receiver may be perfectly aware of what is going on and

be perfectly rational and still intend to do what they are doing.

Kant was wrong, wasn’t he? (At least if half-truths count as

deceptions.) Well, you might say, he was wrong to think that

there was an actual inconsistency involved but right that you

cannot will deception to be a universal law. For wouldn’t our

players prefer a system in which the signals carry perfect informa-

tion about the states? They would not.

If it were a universal law that the senders’ signals identify the states

and that the receivers choose the act that is best response to that

information, the outcomes are those italicized in the payoff table.

Compare these with the deceptive equilibrium, whose outcomes

are shown in boldface. If one is in the role of sender half the time and

that of receiver half the time, the average payoff with honest signal-

ing is 6 and that for deception is 9. Deception is good for you. You

would choose the deceptive equilibrium as universal law.

Well, perhaps Kant is not talking about this game, but about all

games. You cannot (rationally) will deception to be universal law in

all games. Fair enough. But our example shows that one can not

rationally will honest signaling to be a universal law either. That is

my point. If we concentrate on a few extreme cases, we miss a lot of

what is important in communication.
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7

Learning

“Of several responses made to the same situation, those

which are accompanied or closely followed by satisfaction

to the animal will, other things being equal, be more firmly

connected with the situation, so that, when it recurs, they will

be more likely to recur.”

Edward Thorndike, Animal Intelligence, 1911

The Law of Effect

When Edward Thorndike, as an undergraduate English major at

Wesleyan University, read William James’ Principles of Psychology,

he switched his interests. After graduating in 1895 he moved to

Harvard, and eventually conducted learning experiments on chick-

ens in the basement of William James’ house. The epigraph to

this chapter is a statement of Thorndike’s famous “Law of Effect,”

taken from his 1911 Animal Intelligence.

Despite Thorndike’s high regard for James, his studies of what is

now known as reinforcement learning were a move away from

introspective cognitive psychology towards a theory more focused

on behavior. In the spirit of Darwin, he focused on commonalities

between human and animals. That this focus sometimes generated a



certain amount of hostility is evident from his introductory para-

graph of an article on the law of effect:1

It (the Law of Effect) has been even more odious to philosophers and

educational theorists, who find it a dangerous antagonist to, or an inferior

substitute for, their explanations of behavior by purposes . . .

We think that investigation of reinforcement learning is a comple-

ment to the study of belief learning, rather than being a “dangerous

antagonist.” Our strategy will be to begin at the low end of the

scale, to see how far simple reinforcement learning can get us, and

then move up. Exactly how does degree of reinforcement affect the

strengthening of the bond between stimulus and response? Differ-

ent answers are possible, and these give us alternative theories of the

law of effect.

Roth–Erev reinforcement

In 1995 Al Roth and Ido Erev used a version of reinforcement

learning to account for how subjects actually behave in experi-

ments.2 The experiments have the subjects repeatedly playing a

game, and sophisticated rational choice fails to explain the experi-

mental data. Roth and Erev, following pioneering early investiga-

tions by Patrick Suppes and Richard Atkinson show that

reinforcement gives a much better explanation.3

Roth and Erev’s basic model works like this. The probability of

choosing an action is proportional to the total accumulated rewards

from choosing it in the past. They trace the idea back to the

psychologist Richard Herrnstein.4 Some initial equal inclinations,

1 Thorndike 1927.
2 Roth and Erev 1995; Erev and Roth 1998.
3 Suppes and Atkinson 1960.
4 Herrnstein 1961, 1970.
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or propensities, are assumed to get the process started by choosing

at random.5

We can visualize the operation of the law of effect in terms of

drawing balls from an urn. For instance, suppose you have two

actions and start out with an urn containing one red and one black

ball. On the first trial, you draw a ball and choose act 1 if it is red

and act 2 if it is black. Suppose you choose act 1 and get a reward

of two. Then you put two more red balls in the urn and draw

again. Now the chance of drawing a black ball is 1/4. But suppose

you draw the one black ball and get a reward of six. Then you put

in six black balls, and draw again. In this way the urn keeps track

of accumulated rewards. We don’t really need an urn. Organisms

may keep track of accumulated rewards by strength of neural

connections,6 or concentrations of pheromones,7 or any number

of ways.

We can summarize the basic Roth–Erev reinforcement process

as follows: (i) there are some initial inclination weights; (ii) weights

evolve by addition of rewards gotten; (iii) probability of choosing

an alternative is proportional to the inclination weights.

When the magnitudes of the rewards are fixed, there is only one

parameter of the process. That is the magnitude of the initial equal

weights. If they are very large, learning starts off very slowly. If they

are small, initially probabilities can move a lot. But either way, as

reinforcements pile up, individual trials can move probabilities less

and less. Learning slows down. In psychology, the qualitative

phenomenon of learning slowing down in this way is called the

Law of Practice.

5 Later on, we will also consider variations of the process where the initial propensities are

unequal.

6 For a summary of what is known of the neurology, see Schultz 2004.
7 The pheromones in food trails of ants act as a transient record of food obtained that is

essentially a reinforcement memory stored outside the individual ants. Evaporation of the

pheromone strongly discounts the past so that if it is not continually reinforced the trail

vanishes. See Hölldobler and Wilson 1990.
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Bush–Mosteller Reinforcement

In 1950 Bush and Mosteller suggested a different realization of the

law of effect. Today’s rewards act directly on probabilities of acts—

there is no memory of accumulated reinforcements. The most basic

model looks like this: If an act is chosen and a reward is gotten

the probability is incremented by adding some fraction of the

distance between the original probability and probability one.8

Alternative action probabilities are decremented so that everything

adds to one. The fraction used is the product of the reward and

some learning parameter. Rewards are scaled to lie in the interval

from zero to one, and the learning parameter is some fraction.

For example, suppose that there are just two actions and the

current probability of act one is .6. Suppose that you happen to

choose act 1 and get a reward of 1. Take the learning parameter to

be .1, then your new probability of act one is .6 þ .1 (1-.6) ¼.64.
Your new probability of act 2 is .36. At this point the learning

parameter is the only parameter. If it is small you learn slowly; if it is

larger, you learn fast. But learning does not slow down as it does in

Roth–Erev reinforcement. Basic Bush–Mosteller does not obey the

Law of Practice.

Bush–Mosteller learning has also been used to explain empirical

data.9 Both Roth–Erev reinforcement and Bush–Mosteller rein-

forcement have led to versions with various modifications and lots

of parameters, but for now we stick with the simplest versions of

each. We would like to compare them. In the long run they can

behave quite differently.

8 The dynamics may be more familiar in the form of updating with a weighted average of

the old probability and some maximum attainable probability, which I here take to be 1.
Thus, if A is tried and the product of the reward gotten and the learning parameter is a,
then prnew(A) ¼ (1- a) prold(A) þ a (1). This is equivalent to prnew(A) ¼ prold(A) þ a (1—
prold(A), which is the way I said it in the text.

9 Macy 1991; Flache and Macy 2002; Macy and Flache 2002; Borgers and Sarin 2000.
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Slot machines and medical trials

Consider two slot machines that pay off at different unknown

rates—or alternatively, different drugs with different unknown

probabilities of successful treatment. A trial-and-error learner has

to balance two different considerations. She doesn’t want to lock

onto the wrong machine just because it got lucky in a few initial

trials. But nor does she want to explore forever, and never learn to

play the optimal machine. Likewise, in medical research we don’t

want to jump to conclusions. We want to explore long enough to

have a valid study. But if one treatment is clearly better, we don’t

want to deny it to those who need it by dithering about. There is a

tension between gaining knowledge and using it. As John Holland

put it in 1975,10 there is a tradeoff between exploration and exploi-

tation.

If our gambler sometimes freezes into always playing the wrong

machine, we will say her version of reinforcement is too cold. She

learns too fast. If she gets stuck in exploring, and never learns to play

one machine, even in the limit, we will say that her version of

reinforcement is too hot. She never fully learns. Goldilocks rein-

forcement learning would be neither too hot nor too cold.11 It

would always converge to playing the optimal machine with prob-

ability one. In the drug trials model, it would always learn to use the

best treatment.

Is there Goldilocks reinforcement learning? In 2005, Alan Beggs

proved that Roth–Erev reinforcement has the Goldilocks

10 Holland 1975.
11 The reference is to the tale of Goldilocks and the Three Bears:

At the table in the kitchen, there were three bowls of porridge. Goldilocks was hungry.

She tasted the porridge from the first bowl. “This porridge is too hot!” she exclaimed. So,

she tasted the porridge from the second bowl. “This porridge is too cold,” she said. So, she

tasted the last bowl of porridge. “Ahhh, this porridge is just right,” she said happily and she

ate it all up.
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property.12 The theorem was already proved in this context

in 1978, by Wei and Durham13—using different mathematical

techniques.

Bush–Mosteller learning, as presented above, is too cold. It can

freeze into playing the worse slot machine. This is because Bush–

Mosteller reinforcement does not slow down with more practice. It

learns too fast.14

Reinforcement and evolution

Reinforcement learning is probabilistic; at any juncture alternative

acts may be selected and alternative paths taken. But inside the

probabilistic process lies a deterministic dynamics describing the

expected motion at every point in the process.

This is called the average, or mean-field dynamics.15 If learning is

very slow—if it proceeds in tiny steps—then with high probability

the real learning path will, for some time, approximate the mean-

field dynamics. So it is of some interest to ask what this mean-field

dynamics is for our two basic models of reinforcement learning.

In 1997 Tilman Börgers and Rajiv Sarin showed that the mean-

field dynamics for Bush–Mosteller learning is a version of the

replicator dynamics. In 2005, Alan Beggs and also Ed Hopkins

and Martin Posch showed that the mean-field dynamics of Roth–

Erev learning is a version of the replicator dynamics. In Chapter 1,

we started with one question and ended up with two: How can

12 Beggs used stochastic approximation theory, which will enter again later in this chapter.

In stochastic approximation theory, the Goldilocks property has a precise characterization

(connected with decreasing step size of order 1/n). Beggs 2005; Pemantle 2007.
13 Wei and Durham 1978.
14 Some fancier versions of Bush–Mosteller with dynamically adjusting aspiration levels

can be too hot. They may exhibit some degree of “probability matching” and never

converge to one machine. See Borgers and Sarin 2000.
15 For any state of the learner, various things can happen with various probabilities leading

by stochastic dynamics to a new state. Some state is the probability weighted average of the

possible new states, or the expected new state. The deterministic dynamics that maps any

state onto the expected new state of the stochastic dynamics is called the associated mean-

field dynamics.
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interacting individuals spontaneously learn to signal? How can species

spontaneously evolve signaling systems? Now we see that these two

questions are closely intertwined.16

Why then, are the dynamics so different in the long run? The key

is that the Roth–Erev dynamics slows down in such a way that

replicator dynamics is a good indication of limiting behavior.17

Bush–Mosteller does not slow down, so while it may be likely to

stay close to replicator dynamics for a finite stretch of time, it may

not be close at all in the long run. There is a theory of slowing

down in such a way that the mean-field dynamics is a good guide to

limiting behavior, the theory of stochastic approximation.18 This is

the theory that Beggs used to prove that Roth–Erev learning has

the Goldilocks property in medical trials and the slot machine

problem. As we shall see in the next chapter, it is also the tool for

analyzing this kind of reinforcement in signaling games.19

Variations on reinforcement

Both of the realizations of the law of effect that we have discussed

have given rise to various modified versions. Negative payoffs have

been considered, with the zero point either fixed or itself evolving.

Errors have been introduced. A little bit of forgetting the past has

been introduced into the Roth–Erev model (Bush–Mosteller al-

ready forgets the past.) Different ways of translating inclination

weights into choice probabilities have been tried with Roth–Erev.

One popular approach is to use an exponential response rule. The

basic idea is to make probabilities proportional to the exponential of

16 Indeed, some models of evolution in a finite population are remarkably similar to the

Roth–Erev model of reinforcement learning. Payoffs are in offspring, and offspring are just

individuals of the same type. The difference is that individuals die at random, so with some

bad luck types (or even the whole population) may go extinct. But if this doesn’t happen and

the population grows, then the probabilistic process approximates the replicator dynamics

just as reinforcement learning does. Shreiber 2001; Benaim, Shreiber, and Tarres 2004.
17 Of necessity, there is a little over-simplification here.

18 Benaim 1999; Pemantle 1990, 2007.
19 Argiento et al. 2009.
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past reinforcements.20 Or more generally, past reinforcements are

multiplied by some constant, lambda, and probabilities are propor-

tional to the exponential. In analogy with thermodynamics, the

reciprocal of lambda is sometimes called the temperature. If lambda

is zero the temperature is infinite, and everything is tried with equal

probability. If lambda is large, the act with the largest accumulated

rewards is chosen with high probability. Starting with a high

temperature and slowly cooling off is called simulated annealing,

which has been shown to have nice properties for exploring a

fixed environment. The effect of rewards piling up in Roth–Erev

reinforcement, modified with the exponential response rule, is to

slowly cool off the system.

Belief and decision

Reinforcement learners do not have to know their opponent’s

payoffs; they do not have to know the structure of the game. If

acts are reinforced, they do not have to know that they are in a

game. But nowwe will move up a level. Individuals know that they

are in a game. They know the structure of the game. They know

how the combination of others’ actions and their own affect their

payoffs. They can observe actions of all the players in repeated plays

of the game. They can think about all this.

New possibilities for learning now open up. Individuals form

beliefs from past experience about how others are likely to act.

They then use these beliefs and their knowledge of the game to

decide what to do. Different varieties of belief learning dynamics

arise from different accounts of how beliefs are formed and different

ways of reaching decisions.

20 See, for instance, Blume et al. 2002 for an experimental study of signaling games that

evaluates reinforcement learning with an exponential response rule. They, somewhat mis-

leadingly, call this Roth–Erev reinforcement, but it differs from the Roth and Erev model in

the response rule.
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The very simplest way to form beliefs is to just assume that others

will do the same thing that they did last time. The most straightfor-

ward way to choose is to pick the best for you, given your beliefs.

The combination is called the best response dynamics.

It was first studied in the nineteenth century by the mathemati-

cian, philosopher and economist Antoine Augustin Cournot.21 For

this reason it is sometimes called Cournot dynamics.

Inductive logic

The foregoing uses an almost laughably simple method of belief

formation. With a history of past play, it would be possible to form

beliefs by Bayesian inductive logic. The simplest Bayesian model

treats the others as flips of a coin, or rolls of a die, with unknown

bias. This gives us Laplace’s rule of succession. If you choose the best

response to these beliefs, the resulting dynamics is, for the following

odd historical reason, known as fictitious play. In the very early days

of game theory, it was thought that a good way to find equilibria in

games would be to program one of the (then new) computers to

simulate the play of actual players—thus fictitious play. The model of

the learning dynamics of the players that was suggested at the time

by G. B. Brown in 1951 is essentially that just described.22

There are a variety of learning models that interpolate between

pure reinforcement learning and fictitious play,23 and experimental

studies that fit them to experimental data.24

21 Cournot had his players, who were two duopolists controlling a market, alternate best

responses. One might vary the dynamics by having the players best-respond at random times,

and just keep doing the same thing otherwise. This is called best response with inertia.

22 Brown 1951. A lot has been learned about the properties of fictitious play since it was

introduced. For a review see Fudenberg and Levine 1998.
23 See Fudenberg and Levine 1998 and Camerer and Ho 1999.
24 In the short run it may be hard to discriminate between these models. See Salmon 2001.
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Learning to signal

In Chapter 1, we articulated the strategy of starting with reinforce-

ment learning and moving up to belief learning only if reinforce-

ment learning fails. There was a dual rationale for this approach.

First, a positive result for reinforcement learning would apply not

just to humans, but also to many sorts of animals. Second, rein-

forcement learning was supposed to be a worst-case scenario. If it

allowed us to learn to signal, surely more sophisticated forms of

learning would do so too. Is that right? It is time to take a look.
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8

Learning in Lewis Signaling
Games

Can we learn to signal? Obviously we can and do. We are not the

only species able to do this, although others may not do it so well.

The real question is what is required to be able to learn to signal.

Or, better, what kind of learning is capable of spontaneously generating

signaling? If the learning somehow has the signaling system prepro-

gramed in, then learning to signal is not very interesting. If the

learning mechanism is general purpose and low level, learning to

signal is quite interesting. In Chapter 1, we saw that for one kind of

signaling game, low level reinforcement learning could learn to

signal. If many kinds of low level learning allow the spontaneous

emergence of signaling in many situations, we are on the way to a

robust explanation.

Roth–Erev reinforcement

We return to two-state, two-signal, and two-act games with states

equiprobable, and put in all possible strategies. There are now an

infinite number of pooling equilibria, as well as the signaling

systems. We would most like an analysis of this case where rein-

forcement operates not on whole strategies, but rather on



individual acts. Then agents would not even need to see the

situations they find themselves in as part of a single game.

Suppose that the sender has a separate set of inclination

weights—of accumulated past reinforcements—for each state of

the world. You can think of each state as coming equipped with

its own urn, with balls of different colors for different signals to

send. The receiver has a separate set of accumulated reinforcements

for each signal. You can think of the receiver as having a different

urn for each signal received, with balls of different colors for

different acts to choose.

Spontaneous emergence of signaling in this more challenging

set-up would be fully consonant with the spirit of Democritus,

“who sets the world at chance.”1 It requires no strategic reasoning,

just chance and reinforcement. This is, in fact, just what happens.

Individuals always learn to signal in the long run. This is not only

confirmed by extensive simulations, it is also a theorem.2 In this

situation individuals converge to a signaling system with probability

one, with the two possible signaling systems being equally likely.

Spontaneous emergence of signaling is virtually guaranteed.

That is limiting behavior, but what of the short run? Figure 8.1

shows the results of simulations starting with initial weights all equal

to 1. Learning is fast. On average, after 100 trials individuals have an

80% success rate. After 300 trials they are right 90% of the time.

1 As Dante has him in the Divine Comedy, Canto IV:

Then when a little more I rais’d my brow,

I spied the master of the sapient throng,

Seated amid the philosophic train.

Him (Aristotle) all admire, all pay him rev’rence due.

There Socrates and Plato both I mark’d,

Nearest to him in rank; Democritus,

Who sets the world at chance, Diogenes,

With Heraclitus, and Empedocles,

And Anaxagoras, and Thales sage,

Zeno, and Dioscorides well read

In nature’s secret lore.

I would put Democritus higher.

2 Argiento et al. 2009.
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Harder cases

Does the bad news about the replicator dynamics carry over as well

as the good news? Does reinforcement learning sometimes learn

partial-pooling (with only partial information transfer) in Lewis

games with three states, three signals, and three acts? And does it

sometimes end up in total pooling (with no information transfer)

where there are only two states, signals and acts, and the states have

unequal probabilities?

A full analytic treatment of these questions is not available. But

they can be investigated by simulation. We will concentrate on

reinforcing acts. There is only one parameter of the reinforcement,

the initial weights with which we start the process. For the purpose

of initial simulations, we start each player with an initial weight of one

for each possible choice, players choose with probability propor-

tional to their weights, and we augment weights by adding a payoff of

one for a success. In Lewis signaling games with three equiprobable
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Figure 8.1: Learning to signal with 2 states, 2 signals, 2 acts with states
equiprobable. Initial weights ¼1. Reinforcements for success¼1.
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states, three signals and three acts, reinforcement learning learns to

signal in a little more than 90% of trials, but lands on partial pooling

in the rest. As the number of states, signals and acts increases the

success rate goes down. If the number is 4, simulations hit signaling

a little less than 80%; if the number is 8, perfect signaling emerges

less than half the time.3

And even in the basic game where the number of states, signals

and acts is 2, unequal probability of the states can sometimes lead to

signals that contain no information at all. How often depends on

the magnitude of the inequality. When one state has probability .6,

suboptimal outcomes hardly ever happen, at probability .7 they

happen 5% of the time. This number rises to 22% for probability .8,

and 44% for probability .9.4 Suboptimal equilibria are still there.

Roth and Erev found their learning relatively insensitive to

initial choice of weights, but they were considering a different

class of games. So we should try varying the weight parameter.

We set the probabilities of states quite unequal, at 90%–10% and

run reinforcement dynamics with initial weights of different orders

of magnitude. The probability of ending up in pooling equilibrium

instead of a signaling system is shown in the figure 8.2.

Initial weights make an enormous difference! If we raise them to

10, then the probability of getting trapped in a pooling equilibrium

goes up to 94%. If we lower them to .01 probability of pooling goes

down to 1%. And at the minuscule initial weights of .0001, we saw

no pooling at all; each trial led to a signaling system.5 The one

innocuous parameter of Roth–Erev learning becomes crucial.

Small initial weights also lead to signaling in larger Lewis signaling

games.

How are they performing their magic? The explanation cannot

come near the end of the learning process. There the initial

3 Barrett 2006.
4 These simulations are for 1000 trials, with 100,000 iterations of reinforcement learning

on each trial.

5 At state one probabilities of .8, .7, and .6 we always get signaling for initial propensities
.0001, and .001.
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weights, whether great or small, have been swamped by reinforce-

ment. Rather, small initial weights must have their impact at the

beginning of the learning process, where they make the initial

probabilities easy to modify. Perhaps the explanation is that they

both facilitate initial exploration and enhance sensitivity to success.

Bush–Mosteller reinforcement

In the simplest Lewis signaling game with equiprobable states, it

was proved that Roth–Erev learners would learn to signal with

probability one. In the proof, it is crucial that Roth–Erev learners

do not learn too fast or too slowly. They are neither too hot nor too

cold. This is no longer true for reinforcement learners who learn

according to the basic dynamics of Bush and Mosteller. The

basic Bush–Mosteller learning dynamics is too cold. Sometimes it

freezes into suboptimal states.6 This is not to say, however, that

Bush–Mosteller learners never learn to signal. To get an indication

of how often they learn successfully, and how fast, we turn to

simulations.

Effect of Initial Weights 

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10

Initial Weights

P
ro

ba
bi

lit
y 

of
 P

oo
lin

g

Figure 8.2: Effect of initial weights where state probabilities are 90%–10%.

6 Hopkins and Posch 2005; Borgers and Sarin 1997; Izquierdo et al. 2007.

LEARNING IN LEWIS SIGNALING GAMES 97



The surprising result is that, despite the theoretical possibilities

for unhappy outcomes, Bush–Mosteller learners are very successful

indeed. The only parameter of the learning dynamics is the learning

rate, which is between zero and one. In our basic signaling game,

for a wide range of learning rates between .05 and .5, individuals

learned to signal in at least 99.9% of the trials. These results are from

running simulations out to 10,000 iterations of the learning process.

For the short run, consider just 300 iterations of learning. With the

learning parameter at .1, then in 95% of the trials individuals had

already learned to signal with a success rate of more than 98%.

Learning to signal is no longer guaranteed, but it is still to be

strongly expected.

What of the more problematic cases, in which states have un-

equal probabilities?

Here, variations in the learning parameter can make a big differ-

ence, just as variations in the magnitudes of the initial weights did in

Roth–Erev reinforcement. For comparison with figure 8.2, we

reconsider the case in which the state probabilities are 90%–10%.

using Bush–Mosteller.7

With a high enough learning parameter, we reliably learn

to signal even with highly unequal state probabilities. If we

concentrate on the short and medium run, the situation with
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Figure 8.3: Effect of learning parameter with state probabilities 90%–10%.

7 1,000 trials, 100,000 iterations per trial.
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Bush–Mosteller reinforcement doesn’t look much different from

that of Roth–Erev reinforcement.

Exponential response

Consider Roth–Erev modified by using an exponential response

rule. Choice probabilities are no longer simply proportional to

weights, but rather to:

Exp½l � weight�:
The constant l controls the noise in the response probabilities.

When l¼0, noise washes out all other considerations, and all

possible choices are equally probable. When l is high, the rule

almost always picks the alternative with the highest weight.

The exponential response rule interacts with cumulative rein-

forcements of propensities in an interesting way. As propensities

grow, the learner moves more and more towards a sure pick of the

alternative with the highest propensity. If we start with a very small

l, we start with lots of random exploration that gradually moves

towards deterministic choice.8

In two-state Lewis signaling games with unequal state probabil-

ities (probability of state one at .6, .7, .8, .9), simulations of this

learning model with small l (.0001 to .01) always converge to

signaling systems.9 Similar results are gotten for three-state Lewis

games.10 The range of values is not implausible for human learning.

8 For example, suppose the choice is between two acts, A and B and that A is reinforced

three times for every two times B is reinforced. Let lambda in the exponential response rule

be .001, the propensity for A be 3n, and the propensity for B, 2n. Then for n¼10 the

probability to choose A would be .5025— just a little more than one half. But for n¼100 this
probability would be .5250; for n¼1000, .7311; for n¼10,000, .999955. Since the ratio of the
responses has been kept constant at three to two in this example, the linear response rule

would have kept probability of A at 2/3.
9 This is not true for larger values of l.
10 The mechanism is somewhat different from that in win-stay, lose-randomize.
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This form of reinforcement learning allows individuals to avoid

suboptimal equilibria and to arrive at efficient information transfer.

More Complex Reinforcement

There are all sorts of refinements and variations of the foregoing

models. Yoella Bereby-Meyer and Ido Erev11 compare models and

conclude that a modification of Roth–Erev learning, which they

call the ARP model, best fits the data. This model incorporates

negative payoffs, which result in balls being taken out of the urn,

and a floating reference point, which determines which payoffs are

positive or negative. Payoffs above the reference point are positive,

those below are negative, and the reference point itself adjusts in

response to past experience. In good times your reference floats up,

in bad times it settles down. What you are used to eventually tends

to become your reference point. Negative payoffs are subtracted

from weights until they are almost equal to zero.

The point where we stop subtracting is called the truncation

point. There is a little discounting of the past. There are errors. All

of these modifications have psychological currency. This is a model

with a lot of parameters. Erev and Bereby-Meyer fit the parameters

to the data.

Jeffrey Barrett has taken the ARP model, together with the

parameter values gotten from the data by Erev and Bereby-

Meyer, and shown how this type of learning allows one to learn

to signal.12 Barrett finds that the basic modifications introduced into

the model for psychological reasons tend to make it easier to learn

to signal.13 I believe that at this point we can conclude that the

11 Bereby-Meyer and Erev 1998.
12 Barrett 2006, 2007a, 2007b. Barrett and Zollman 2007.
13 There are other competing complex models with their own parameters to estimate

from the data. It would be nice to have a definitive realistic model to apply to signaling. At

this time there seems to be no clear winner. The models all fit the data reasonably well.

Salmon 2001; Feltovich 2000; Erev and Haruvy 2005.
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possibility of learning to signal by simple reinforcement is a reason-

ably robust finding.

Neural Nets

Patrick Grim, Paul St. Denis, and Trina Kokalis14 consider sponta-

neous emergence of signaling in neural nets. There is a spatial array

of agents, each equipped with a neural net. Both food sources and

predators migrate through space. There are different optimal ac-

tions—feed or hide—in the presence of a food source or a predator.

Individuals can utter potential signals that are received (taken as

inputs) by their neighbors.

Periodically, individuals have their neural nets “trained up” by

their most successful neighbors. Simulations show spontaneous

emergence of successful signaling in which individuals “warn” of

predators in the neighborhood and “advertise” wandering food

sources.

Imitating neighbors

Kevin Zollman also investigates learning to signal by interaction

with neighbors on a spatial grid, using imitation dynamics.15 Each

individual looks at eight neighbors, to the N, NE, E, SE, S, SW,W,

NW, and imitates the most successful neighbor if that neighbor

does better than she does. Ties are broken at random. He considers

two games. The first is a Lewis signaling game with two states, acts,

and signals. Signaling evolves. In 10,000 simulations, starting with a

random assignment of strategies, signaling systems always emerged.

However, alternative signaling systems coexisted, each occupying

14 Grim et al. 2002.
15 Zollman 2005.
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different areas. We see spontaneous generation of regional signaling

dialects.

His second game is even more interesting. Signaling is possible

prior to playing another game—the Stag Hunt—with neighbors.

Play in the Stag Hunt can be conditional on the signal received.

A strategy now consists of a signal to send and an act in the Stag

Hunt for each possible signal received. Just as before, signals have

no preexisting meaning. Meaning now must co-evolve with be-

havior in the Stag Hunt.

In the Stag Hunt game, each player has two possible acts: Hunt

Stag, Hunt Hare. Payoffs in one canonical Stag Hunt are:

There are two equilibria, one in which both players hunt Stag and

one in which they both hunt Hare. The former is better for both

players, but each runs a risk by hunting Stag. If the other hunts

Hare, the Stag hunter gets nothing. Hare hunters run no such risk.

For this reason, conventional evolutionary dynamics favors the

Hare hunting equilibrium.

Zollman finds that with interactions with neighbors on a spatial

grid and imitate-the-best learning, pre-play signaling evolves such

that all players end up hunting Stag. This happens even though the

signaling systems are not all the same. We end up with a heteroge-

neous population that has spontaneously learned both to signal and

to use those signals to cooperate. (Grim, Kokalis, Tafti, and Kilb

had already used imitation dynamics on a spatial grid in their

signaling game with food sources and predators.16)

The foregoing papers are confined to interactions with neighbors

on a special kind of structure—a spatial grid with edges wrapped to

Stag Hare

Stag 4,4 0,3

Hare 3,0 3,3

16 Grim et al. 2000; See also the review in Grim et al. 2004.
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form a torus. Elliott Wagner extends the analysis to arbitrary inter-

action networks.17 He also considers not only the nice case of two

states, signals and acts, states equiprobable, but also our problem

cases with unequal probabilities and bigger games.

He finds that the network structure is very important for wheth-

er individuals learn to signal, and for whether they learn the same

signaling systems or evolve regional dialects. Small world networks

are highly conducive to arriving at uniform signaling across the

population, and they are remarkably effective in promoting effi-

cient signaling even in our problem cases.

Belief learning

Let us move up to the simplest form of belief learning, and see what

difference it makes. We now assume that the agents involved know

the payoff structure of the game, but do not directly observe what

the other player did.What happens with best response dynamics? In

general, players may not know what a best response is. They know

what they did, they know whether or not they got a payoff, and

they know the structure of the game. So if they did get a payoff

signaling worked, and the best response to the other player’s last act

is to do the same thing in the same situation. In the special case

where each player only has two choices, if they did not get a payoff

the best response is clearly to try the other thing.

But in the general case, where there are more than two states,

acts, and consequences, plays which lead to no payoff leave the

players somewhat in the dark. The receiver knows what she did,

and what signal she got, but not which of the states the sender saw.

The sender knows what the state was and which signal was sent, but

not which of the inappropriate acts was done. Neither knows

enough to determine the best response. In such a case, we might

consider a weak version of the rule in which she chooses at random

17 Wagner 2009.
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between alternatives which might be a best response consistent

which what she knows. Call this best response for all we know.

The special case of two states, signals and acts is different. If

signaling does not succeed, each player can figure out what the

other did since the other had only two choices. Best response

dynamics here is well defined. How does it do? The following

analysis is due to Kevin Zollman.

Pure best response dynamics can get trapped in cycles and never

learn to signal.18 Our primitive belief learners are outsmarting each

other! Let us try making them a little less eager to be rational. Every

once and a while a player best-responds to the other’s previous

action, but most of the time he just keeps doing the same thing

mindlessly. This is best response with inertia. You can think of each as

flipping her own coin to decide whether to best respond on this

round or not. (The coins can be biased.) Acting in accord with best

response with inertia, our agents now always learn to signal. With

probability one, they sooner or later hit on a signaling system, and

then stick with it forever.

What about signaling games with N signals, states and acts? Now

the closest our players can come to best response is best response for all

we know. On getting a payoff, they know that they did a best

response to the other’s act, so they stick with it. On a failure all

they know is that they didn’t do a best response, but they don’t

know which of the other possible actions was the best response—so

they choose at random between those alternatives. Already in the

case where N¼2, that we have already considered, this kind of

learning gets trapped in cycles. So, for the general case, we are led

to consider best response for all we know with inertia. Individuals either

just keep doing what they were doing, or—at random times—best

respond for all they know. This is an exceedingly modest form of

belief learning, but Zollman shows that here (numbers of states,

signals and acts are equal), it always learns to signal. It locks on to

18 Try working out the possibilities yourself.
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successful pieces of a signaling system when it finds them, and it

explores enough to surely find them all.

Now let us think about where all this thinking about belief

learning has led. Best response for all you know with inertia just comes

to this: Keep doing what you have been doing except once in a while pay

attention and if you fail try something different (at random). So rede-

scribed, this learning rule does not require beliefs or strategic

thinking at all! The cognitive resources required are even more

modest than those required for reinforcement learning, since one

need not keep track of accumulated payoffs—and it always works.

Learning to signal

How hard is it to learn to signal? This depends on our criterion of

success for the learning rule. If success means spontaneous genera-

tion of signaling in many situations, then all the kinds of learning

that we have surveyed pass the test. In particular, all forms of

reinforcement learning work, although some work better than

others. If it means learning to signal with probability one in all

Lewis signaling games, a simple payoff-based learning rule will do

the trick. It is easy to learn to signal.
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9

Generalizing Signaling Games:
Synonyms, Bottlenecks,
Category Formation

Generalizing Sender-Receiver

To require that the number of states, acts and signals are equal is a

drastic restriction. It may make sense to load up the model with all

possible symmetries in order to demonstrate the power of sponta-

neous symmetry-breaking, but for a naturalistic account of signal-

ing we need to move beyond these very special cases. Some

organisms may have a quite limited repertoire of signals, while

others—in particular ourselves—may seem to have an embarrass-

ment of riches. So we have cases of too few signals and too many

signals.1 Other mismatches are possible. There may not be enough

acts to respond effectively to all the states.

In our simplest model, we also imposed an extreme symmetry on

payoffs. If an act was “right” for a state, both sender and receiver got

a payoff of one, otherwise a payoff of zero. In general, we should

consider all sorts of payoffs in including ones where sender and

receiver are in full or partial conflict. We will discuss such cases in a

later chapter. Here we maintain the assumption that in all contin-

gencies sender and receiver get the same payoff. But even where

sender and receiver continue to have pure common interest, relaxing

1 Wärneryd 1993 considers the case where there are too many signals. Donaldson,

Lachmann, and Bergstrom 2007 discuss mismatches in general.



the strict assumptions on payoffs imposed so far may lead to new

phenomena.2

Many states

If states of the world are whatever the organism can discriminate,

then for all but the most perceptually limited organisms there are

very many states indeed. Even for organisms with rich signaling

systems, such as ourselves, there are more states than will fit com-

fortably within our signaling systems. The evolution of signals must

somehow deal with this fact. We can consider miniature versions

by looking at signaling games with more states than signals or acts.

Suppose we have three states, but only two signals and two acts.

Let us say that act 1 is the right act for state 1 and act 2 is the right act

for state 2. If we ignore state 3, payoffs are just as they would be in a

two-state signaling game, but what about state 3?

There are various alternatives. It could be that one of these acts is

also “right” for state 3. For example, act 1might be right for state 3.

Signaling system equilibria are not yet defined for such games, but

there seems to be an obvious candidate. That is one composed of a

sender’s strategy that maps states 1 and 3 onto the same signal,

which elicits act 1 from the receiver, and which maps state 2 onto

the other signal, which the receiver’s strategy maps to act 2. A

realization is shown in figure 9.1:

Act 1 Act 2

State 1 1, 1 0, 0

State 2 0, 0 1, 1

State 3 ?, ? ?, ?

2 Lewis 1969 allows this, but does not go very far in exploring its consequences.
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These signaling systems are optimal for sender and receiver, and

they are evolutionarily stable strategies, just as in the original

signaling games. In the equilibrium shown, we could say that signal

1 carries disjunctive information. It indicates “state 1 or state 3.”

Alternatively, from the point of view of the signaling system, states

1 and 3 are treated as if they were a single state. So, as David Lewis

pointed out in Convention, we could call states 1 and 3 a single state

and assimilate this case to the original 2 state, 2 signal, 2 act model.

At the other extreme, it might be that neither act is any good for

state 3. Perhaps state 3 is the proximity of a predator that will get

you whether you do act 1 or act 2. The payoffs might look like this:

1

2

3

1

2

1

2

Figure 9.1: A signaling system where there are many states.

Act 1 Act 2

State 1 1, 1 0, 0

State 2 0, 0 1, 1

State 3 1, 1 0, 0

Act 1 Act 2

State 1 1, 1 0, 0

State 2 0, 0 1, 1

State 3 0, 0 0, 0
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Now there are no evolutionarily stable strategies. The reason is that

it doesn’t matter what signal is sent in state 3. The only acts available

are ineffectual. No matter what natives do in state 3, mutants

who do something different in state 3 will do as well as natives.

Any equilibrium that does the right thing in states 1 and 2 is as good

as it gets.

We looked at two extreme cases, but it is plausible to suppose

that many cases are intermediate between the two. Consider:

where a is greater than b. Then a signaling system that uses one

signal which elicits act 1 in both states 1 and 3 is evolutionarily

stable just as before. It gives the participants the best possible payoff.

The intermediate cases look like figure 1. Simulations show rein-

forcement learners rapidly learning to use such a signaling system.

The example illustrates a general point. In general, where there

are many states, a signaling system partitions the states. Evolution of

a signaling system is evolution of a system of categories used by that

system. That evolution is driven by pragmatics—by the available

acts and payoffs.

Many signals

Suppose that there is an abundance of signals, relative to the

available states and acts. Then if all the signals are used, an efficient

system of signals will include functional synonyms, which are used in

the same states and lead to the same acts. On the other hand, there

are efficient equilibria where some signals are never used. As

recently shown by Matina Donaldson, Michael Lachmann and

Act 1 Act 2

State 1 1, 1 0, 0

State 2 0, 0 1, 1

State 3 a, a b, b
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Carl Bergstrom,3 the concept of evolutionary stability here has no

teeth. No equilibrium is evolutionarily stable.

There are, nevertheless, many equilibria where complete infor-

mation about the state is transmitted, and players always get paid.

Consider the simplest case with two states, three signals, and two

acts, with one act being right for each state and the states equiprob-

able. Payoffs are just:

Figure 9.2 shows some cases of synonyms:

Signals 1 and 2 are used with probability x and (1–x) respectively.

They both indicate state 1 and lead to act 1, and so may be regarded

as functional synonyms. Every value of x gives one equilibrium, so

we have a whole line of equilibria here.

Figure 9.3 shows a signaling equilibrium where synonyms have

died out.

State 1 State 2

Act 1 1,1 0,0

Act 2 0,0 1,1

1

2

1

2

1

2

3

x

1-x

Figure 9.2: Synonyms.

3 Donaldson, Lachmann, and Bergstrom 2007. This is the first systematic treatment of the

equilibrium structure in these signaling games.
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In this equilibrium the sender sends signal 1 exclusively in state 1,

signal 3 exclusively in state 2, and never sends signal 2. The receiver

may have propensities to respond in signal 2 in various ways, but

these are never exercised. Every value of y gives an equilibrium, so

we have a whole line of equilibria here.

Now notice that the line of equilibria in figure 2 and the line of

equilibria in figure 3 are connected—they share a point. If x ¼ 1

and y ¼1, we are in both pictures. But now it should be apparent

that if y ¼ 0 in figure 3, we have a point that is shared with another

line of synonym equilibria—as shown in figure 9.4.

All these equilibria are perfectly good for signaling, and they are

all connected in one big component of signaling systems. There is

one continuous path through all of them.

1

2

1

2

1

2

3

y

1-y

Figure 9.3: No synonyms.

1

2

1

2

1

2

3

x

1-x

Figure 9.4: More synonyms.
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With such a rich set of signaling systems, which will you get?

That is a question that cannot be answered by equilibrium analysis,

but must be addressed in terms of the dynamics. The answer may

depend on the dynamic law, and on the starting point. One

possibility would be to use reinforcement learning on acts operating

on repeated encounters between a sender and receiver. We start

with everything symmetrical—one ball of each color, so to speak,

in each sender’s and receiver’s urn.

One might expect that with this dynamics and this starting point

reinforcement would eliminate synonyms. One of the synonyms

would be used a little more, get reinforced more, used even more,

and take over—so the thought goes.4 But this verbally plausible

argument is incorrect. Synonyms are formed and they persist.

A different dynamics could give quite a different result. In

replicator dynamics, our basic model of differential reproduction

in a large population, this situation is structurally unstable. Adding a

little uniform mutation to the large population model will tend to

collapse components to points, and to stabilize synonyms. Finite

population models may allow the state to drift around the compo-

nent of equilibria. A full analysis remains to be done.

Few signals

Some agents may have appropriate acts for the states, but too few

signals to coordinate states with acts. This is the case of an informa-

tional bottleneck. Informational bottlenecks affect humans as well

as other organisms because, although we have a rich repertoire of

signals, we may not have the time or means to utilize it in a specific

situation.

4 The thought is based on a misconception. Once the players have learned to treat two

signals as synonyms, the relative reinforcement between them is a Pólya urn process. Then

the synonyms may end up being used with any kind of relative frequency. This is what we see

in the simulations.
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Signaling games with information bottlenecks present quite a

different picture. Bottlenecks can create suboptimal evolutionarily

stable strategies, as shown by the following example of Matina

Donaldson, Michael Lachmann, and Carl Bergstrom.

We suppose that the states are equiprobable. If there were three

signals, then agents could always behave optimally, for an average

payoff of 7 2/3. But there are only two signals. Then they might

settle into the signaling system shown in figure 9.5.

This is an evolutionarily stable strategy. It is not a bad way of

dealing with the informational bottleneck, with an average payoff

of 7.

But this is not the only evolutionarily stable strategy. Another is

shown in figure 9.6.

This equilibrium is suboptimal, with an average payoff of 6. But

it is still a strict equilibrium of the two-person game, and an

Act 1 Act 2 Act 3

State 1 7, 7 0, 0 2, 2

State 2 4, 4 6, 6 0, 0

State 3 0, 0 5, 5 10, 10

1

2

3

1

2

1

2

3

Figure 9.5: An efficient solution to a bottleneck.
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evolutionarily stable strategy.5 A reasonable adaptive dynamics can

fall into this state.

These two equilibria represent two different ways in which a

signaling system can categorize the world. But, unlike the examples

of the first section of this chapter, we see that the system of

categories that evolves may not be optimal.

Systems of categories

In a given signaling game, we have seen how the signals evolve so as

to embody a system of categories. States that the sender maps onto

the same signal belong to the same category according to the

signaling system. But signals may be used in different situations.

They may become “decoupled” from a particular signaling game, at

least in the quite rigid sense which we have given to signaling

games.6 How should we think about this process?

We can move part of the way to an answer by broadening our

model of a signaling game. Suppose the sender sometimes is in a

position to observe the state exactly, but sometimes can only

determine the member of some coarser system of categories. For

example, suppose that sometimes a monkey may be able to

1

2

3

1

2

1

2

3

Figure 9.6: An inefficient solution to the same bottleneck.

5 In both one and two population settings.

6 Compare Sterelny 2003 on decoupled representations.
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determine whether a leopard, eagle, or snake is present; sometimes

only whether there is an aerial or terrestrial predator. We can

incorporate this in our model by letting nature not only choose a

state, but also choose an observational partition. Sometimes nature

may choose the finest partition whose members are the states

themselves, sometimes a coarser partition. The sender sees only

the member of the partition in which the true state resides. A

sender’s strategy now maps members of observational partitions to

signals.

There may be acts optimal for some coarse-grained information

that are different from the acts optimal for any specific state. We

can put them in the model as well. Then it is quite possible to

evolve a signaling system where some signals represent disjunctions

of states.7 More generally, we can evolve a signaling system that

incorporates a system of categories of different specificity.

Consider a game with three equiprobable states. There are three

acts, one right for each state, just as in the simplest signaling game:

but there are also three other acts that are less than optimal in each

state, but also less risky:

Act 1 Act 2 Act 3

State 1 1,1 0,0 0,0

State 2 0,0 1,1 0,0

State 3 0,0 0,0 1,1

Act 1 Act 2 Act 3 Act 4 Act 5 Act 6

State 1 1,1 0,0 0,0 .6,.6 0,0 .8,.8

State 2 0,0 1,1 0,0 .6,.6 .8,.8 0,0

State 3 0,0 0,0 1,1 0,0 .8,.8 .8,.8

7 I first floated this idea in a discussion of the evolution of logical inference in Skyrms

2000.
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Using the fact that states are equiprobable, we get the average

payoff for sets of states:

A sender’s strategy in this extended game maps sender’s observa-

tional states to signals sent, and a signaling system equilibrium is an

equilibrium that gives optimal payoffs to the players. For instance:

State 1 ¼> Signal 1 ¼> Act 1

State 2 ¼> Signal 2 ¼> Act 2

State 3 ¼> Signal 3 ¼> Act 3

S1 or S2 ¼> Signal 4 ¼> Act 4

S2 or S3 ¼> Signal 5 ¼> Act 5

S1 or S3 ¼> Signal 6 ¼> Act 6

This is evolutionarily stable in our extended signaling game.8 Sig-

nals 4, 5, and 6 might be thought of as having a proto-truth-

functional content relative to signals 1, 2, and 3.

Consider the alternative observational partitions of states implicit

in this little example. There is the finest partition, where the

observer sees the state exactly. There are three coarsenings of this

partition, {S1-or-S2, not-(S1-or-S2)}, {S2-or-S3, not-(S2-or-

S3)}, {S1-or-S3, not-(S1-or-S3)}. It should be obvious how to

construct more complex examples. We have an account of the

evolution of systems of categories. It can happen without any

Act 1 Act 2 Act 3 Act 4 Act 5 Act 6

State 1 1,1 0,0 0,0 .6,.6 0,0 .8,.8

State 2 0,0 1,1 0,0 .6,.6 .8,.8 0,0

State 3 0,0 0,0 1,1 0,0 .8,.8 .8,.8

1 or 2 .5,.5 .5,.5 0,0 .6,.6 .4,.4 .4,.4

2 or 3 0,0 .5,.5 .5,.5 .3,.3 .8,.8 .4,.4

1 or 3 .5,.5 0,0 .5,.5 .3,.3 .4,.4 .8,.8

8 There is no guarantee that this will always happen.
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complex rational thought, simply as a consequence of the action of

adaptive dynamics.

Conclusion

Once we allow modest generalizations of signaling games, interest-

ing new phenomena appear. We have synonyms and bottlenecks.

We have the pragmatics of signaling inducing systems of categories

into which states are sorted. These new phenomena raise new

questions. Do synonyms persist or do they fade away? Are bottle-

necks permanent or is there a plausible account of how adaptive

dynamics can eliminate them? How can agents combine the infor-

mation from various levels of categories? We have seen that for at

least one plausible dynamics synonyms persist. We will try to shed a

little light on the two remaining questions in subsequent chapters.
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10

Inventing New Signals1

New signals?

Agents may not have enough signals to convey the information that

they need to communicate. Why can’t the agents simply invent

new signals to remedy the situation? We would like to have a

simple, easily studied model of this process. That is to say, we

want to move beyond the closed models that we have studied so

far, where the theorist fixes the signals, to an open model in which

the space of signals itself can evolve. I can find no such account in

the literature. I would like to suggest one here.

Invention in nature: genetic evolution

The fixed number of signals in a Lewis signaling game is, after all, an

artificial limitation. In nature those signals had to be invented. If

they were invented, new signals could be invented as well. The

range of potential new signals is highly dependent on the nature of

the signalers. The availability of new signals for bacteria, for instance,

is constrained by molecular biology. Even so, over evolutionary

time, different species of gram-negative bacteria2 have managed to

1 For more analysis of this model of inventing new signals, see Skyrms and Zabell

forthcoming.

2 So called, because they do not take up the violet stain in Gram’s test. Gram negative

bacteria tend to be pathogens.



invent different quorum-sensing signaling systems by evolving ways

to make small side-chain modifications to a basic signaling molecule.3

Quorum-sensing was discovered in bacterium, Vibrio fisheri that

inhabits the light organ of the Hawaiian squid, Euprymna scolopes.

Euprymna is a nocturnal hunter. If there is a full moon, it can be

highly visible against the illuminated surface of the water and

become prey itself. It uses its light organ to counter this and render

itself less conspicuous to its predators. The light, itself, is made by

the bacteria living in the light organ. The squid supplies the bacteria

with nutrients and the bacteria provide the squid with camouflage.

The bacteria regulate light production by quorum-sensing. They

produce a small, diffusible (AHL) signaling molecule. It is auto-

inducing—when its concentration in the ambient environment

increases, the bacteria produce more of it. This happens inside the

light organ. High enough concentrations, a quorum, trigger gene

expression that turns on the light. (The squid turns the lights off by

simply expelling bacteria from the organ and replacing them with

seawater.)

Subsequently, quorum-sensing signaling based on slight modifi-

cation of the AHL molecule has been found in other gram negative

bacteria. Psuedomonas aeruginosa uses quorum-sensing to turn on

virulence and biofilm formation in the lungs of cystic fibrosis

patients. A bacterium (Erwinia carotovora)4 that rots plants uses

AHL-based quorum-sensing to turn on both virulence against the

plant and production of antibiotics against competitor bacteria that

could also exploit the damaged host. An ancestral signaling system

has been modified for a variety of different uses.

Gram positive bacteria5—including such sometimes nasty custo-

mers as Staphylococcus aureus—have parallel signaling systems based

on different signaling molecules. In a review of quorum-sensing,

Melissa Miller and Bonnie Bassler conclude:

3 Taga and Bassler 2003; Miller and Bassler 2001.
4 See Miller and Bassler 2001.
5 So called, because they do take up the dye in Gram’s stain test.
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Bacteria occupying diverse niches have broadly adapted quorum sensing

systems to optimize them for regulating a variety of activities. In every

case quorum sensing confers on bacteria the ability to communicate and

to alter behavior in response to the presence of other bacteria. Quorum

sensing allows a population of individuals to coordinate global behavior

and thus act as a multi-cellular unit. Although the study of quorum sensing

is only at its beginning, we are now in a position to gain fundamental

insight into how bacteria build community networks.6

Evolution creates and modifies signals in even the most primitive

organisms.

Invention in nature: cultural evolution

Invention in genetic evolution may be highly constrained and take

a long time. In cultural evolution and in individual learning there is

more latitude for new signals, and evolution of the signaling space is

ongoing.

For instance, the vocal capabilities of monkeys allow for a range

of potential signals that, when required, can be tapped by learning.

Vervet monkeys who have encountered a new predator have

learned both a new signal and a new evasive action:

Vervets on the Cameroon savanna are sometimes attacked by feral dogs.

When they see a dog, they respond much as Amboseli vervets respond to a

leopard; they give loud alarm calls and run into trees. Elsewhere in the

Cameroon, however, vervets live in forests where they are hunted by

armed humans who track them down with the aid of dogs. In these

circumstances, where loud alarm calls and conspicuous flight into trees

would only increase the monkeys’ likelihood of being shot, the vervets’

alarm calls to dogs are short, quiet and cause others to flee silently into

dense bushes where humans cannot follow.7

6 Miller and Bassler 2001.
7 Cheney and Seyfarth 1990, 169 who refer to Kavanaugh 1980.
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The dynamics of learning, when the need arises, is able to modify

the signaling system in a highly efficient way.

General principles

There is nothing really mysterious about the modification of the

vervets’ signaling system described above. First, nature presents the

monkeys with a new state—one different from “all clear” or from

the presence of any of the familiar predators. The salience of this

new state, “dogs and hunters,” is established when the first monkey

is shot. An appropriate new escape action is discovered. In principle

it might be discovered just by group trial and error, although we do

not want to sell the vervets short on cognitive ability.

Once we have the new state and the appropriate new action we

are in the kind of information bottleneck that we described in

Chapter 1. We have seen that such bottlenecks can sometimes

spontaneously arise from dynamics of evolution and learning.

What is required is the invention of a new signal. Senders have

lots of potential signals available to them. These are just actions—in

this case, vocalizations—that receivers are liable to notice. Senders

try potential signals, receivers try actions, and happy coincidences

are rewarded.

General principles of invention emerge. We can suppose that

there are acts that the sender can take which the receiver will

notice. These could be tried out as signals—either on a short time

scale or a very long one. The potential signals may be sounds, or

movements, or secretions of some chemical. They may bear some

resemblance to other signals, or to other features of the environ-

ment that receivers already tend to monitor. With some probability

a new signal can be actualized—a sender will send it and a receiver

will pay attention to it.

Verbal statement of general principles is not hard, but we still

lack a simple model that can serve as a focal point for analysis. How

should we incorporate the invention of new signals in the Lewis
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model of signaling games? We would like to retain as much as

possible the simplicity and analytical tractability of the original

model, while having an open rather than a closed set of signals.

The Chinese restaurant process

We begin with an example that may appear overly fanciful, but

which will nevertheless turn out to be relevant. Imagine a Chinese

restaurant, with an infinite number of tables, each of which can

hold an infinite number of guests. People enter one at a time and sit

down according to the following rule. If N guests are already

seated, the next guest sits to the left of each of the N guests already

seated with probability 1/(Nþ1), and goes to an unoccupied table

with probability 1/(N þ 1). [One could imagine a ghost sitting

at the first unoccupied table, and then the rule would be to sit to

the left of someone—including the phantom guest—with equal

probability.]8

The first person to enter sits at the first unoccupied table, since

no one but the phantom guest is there. The phantom guest moves

to the first unoccupied table. The second person to enter now has

equal probability of sitting with the first, or at an unoccupied table.

Should the second join the first, the third has a 2/3 chance of sitting

at their table and a 1/3 chance of starting a new one. Should the

second start a new table, the phantom guest moves on, and the third

will join one or the other or start a third table with equal proba-

bility. This is the Chinese restaurant process, which has a surprising

number of applications, and which has been well studied as a

problem in abstract probability theory.9

Since there is only one phantom, the probability of a new table

being selected goes down as the number of guests goes up. But if

there is an infinite stream of guests, at any point in the process the

8 Variations place some number of phantom guests at the first unoccupied table.

9 Aldous 1985; Pitman 1995.
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probability that no new table will ever be selected is always zero. In

the limit an infinite number of tables will be occupied. Neverthe-

less, for long finite stretches of time the number of occupied tables

may be small.

To get a feel for the process, suppose that four guests have

entered. We could have four tables occupied (1þ1þ1þ1), or

three (2þ1þ1) or two {(2þ2) or (3þ1)} or one (4). The last

possibility, that all guests sit at the first table is six times as probable

as the first alternative in which each guest chooses a different

table.10 The possibility of three guests at one table and one at the

other can be realized in four different ways. Numbering the guests

in order of appearance, they are: {1,2,3}{4}, {2,3,4}{1}, {1,3,4}

{2}, and {1,2,4}{3}. Each has equal probability—which guests are

at which tables does not matter.

Adding up the probabilities of the ways of getting the (3þ1)
pattern we get (8/24). Likewise, we find the probability of the

(2þ2) pattern as (3/24). The probability that two tables are occu-

pied is the sum of these, or (11/24). We may notice in passing that

the probability of unequal occupation of two tables (3þ1) is much

more likely than that of equal occupation (2þ2). The probabilities
of different numbers of tables being occupied are:

As more and more guests come in, the expected number of occu-

pied tables grows as the logarithm of the number of guests.

10 (1)(1/2)(2/3)(3/4) ¼ (6/24) vs. (1)(1/2)(1/3)(1/4) ¼ (1/24).

One Table: (6/24)

Two Tables: (11/24)

Three Tables: (6/24)

Four Tables: (1/24)
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Hoppe’s urn

Ifwe neglect the seating order of guests at a table, and just keep track of

the number of guests at each table, the process is equivalent to a

simple urn model. In 1984 Hoppe introduced what he called

“Pólya-like urns” in connectionwith “neutral” evolution—evolution

in the absence of selection pressure. In a classical Pólya urn process, we

start with an urn containing various colored balls. Thenwe proceed as

follows: A ball is drawn at random. It is returned to the urn with

another ball of the same color. All colors are treated in exactly the same

way. We can recognize the Pólya urn process as a special case of

reinforcement learning in which there is no distinction worth

learning—all choices (colors) are reinforced equally. The probabilities

in a Pólya urn process converge to a random limit. They are guaran-

teed to converge to something, but that something can be anything.

To the Pólya urn, Hoppe adds a black ball—the mutator.11 The

mutator does not mutate in the sense explored in earlier chapters,

where colors in the urn mutate to one another. Rather, it brings

new colors into the game. If the black ball is drawn, it is returned to

the urn and a ball of an entirely new color is added to the urn.

(There are, of course, lots of variations possible. There might be

more than one black ball initially, and Hoppe considered this

possibility. The number of black balls might not be fixed, but

might itself evolve in various ways. Here, however, we will stick

to the simplest case.) The Hoppe-Pólya urn model was meant as a

model for neutral selection, where there are a vast number of

potential mutations which convey no selective advantage.

(It also has an alternative life in the Bayesian theory of induction,

having essentially been invented in 1838 by the logician Augustus

de Morgan to deal with the prediction of the emergence of novel

categories.)12

11 Hoppe 1984.
12 I owe my knowledge of this to Sandy Zabell. For both history and analytical discussion

see Zabell 1992, 2005.
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It is evident that the Hoppe-Pólya urn process and the Chinese

restaurant process are the same thing. Hoppe’s colors correspond to

the tables in the Chinese restaurant; the mutator ball corresponds to

the phantom guest. After a finite number, N, of iterations the N

guests in the restaurant, or the N balls in Hoppe’s urn, are parti-

tioned into some number of categories. The categories are colors

for the urn, tables for the restaurant. But the partitions we end up

with can be different each time; they depend on the luck of the

draw. We have random partitions, which may have a different num-

ber of categories, different numbers of individuals in each category,

and different individuals filling out the numbers—all of which we

have seen in our little example with four guests.

We also saw in our example that all ways of realizing the

pattern of one table with three guests and one table with one

were equally likely. This is generally true of the process. All that

affects the probability is a specification of the number of tables

that have a given number of guests. This specification is called

the partition vector. In our example is it 1 table with one guest,

0 tables with 2 guests, 1 table with 3 guests, 0 tales with four

guests: <1,0,1,0>? The fact that any arrangement of guests with

the same partition vector has the same probability is called

partition exchangeability, and it is the key to mathematical analysis

of the process.

There are explicit formulas to calculate probabilities and ex-

pectations of classes of outcomes after a finite number of trials.

The expected number of categories—of colors of ball in Hoppe’s

urn or the expected number of tables in the Chinese restaurant—

will be of particular interest to us, because the number of colors

in a sender’s urn will correspond to the number of signals in use.

This is given by a very simple formula.13 Results are plotted in

figure 10.1:

13 SUM (from i¼0 to i¼N-1) 1/(1þi).
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For even quite large numbers of trials, the expected number of

categories is quite modest. There is something else that I would like

to emphasize. For a given number of categories, the distribution of

trials among those categories is not uniform. We can illustrate this

with an example that is simple enough to graph. Suppose we have

ten trials and the number of categories turns out to be two (two

colors of ball, two tables in the restaurant) which will happen about

28% of the time. This can be realized in five different ways of

partitioning 10: 5 þ 5, 4 þ 6, 3 þ 7, 2þ 8, 1þ 9. There is a simple

way of calculating the probability of each—the Ewens sampling

formula. The results are graphed in figure 10.2.

The more unequal a division is between the categories, the more

likely it is to occur. Some colors are numerous, some are rare. Some

tables are much fuller than others. Finally, let us notice that the

Hoppe urn can be redescribed in a suggestive way. You can think

of it as a way of moving between Pólya urns. The mutator process is

kept track of on the side, say with an urn of one black and many

white balls. Pick a white ball from the auxiliary urn and you add

another white ball, and sample from your current Pólya urn. Pick

the black ball from the auxiliary urn and you move to a different

Pólya urn with all the old balls and with one more ball of one more
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Figure 10.1: Expected number of categories.
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color. This is a little like moving between games, and we will make

it the basis of doing just that.

Reinforcement with invention

We remarked that Pólya urn process can be thought of as reinforce-

ment learning when there is no distinction worth learning—all

choices (colors) are reinforced equally. The Hoppe-Pólya urn,

then, is a model that adds useless invention to useless learning.

That was its original motivation, where different alleles confer no

selective advantage.

If we modify the Pólya urn by adding differential reinforce-

ment—where choices are reinforced according to different pay-

offs—we get the Herrnstein–Roth–Erev model of reinforcement

learning of the foregoing chapters. If we modify the Hoppe-Pólya

model by adding differential reinforcement, we can get reinforce-

ment learning that is capable of invention.14
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Figure 10.2: Probability of partitions of 10 into two categories.

14 Alternatively, we can interpret this as a model of evolution in a finite, growing

population.
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Inventing new signals15

We use the Hoppe-Pólya urn as a basis for a model of inventing

new signals in signaling games. For each state of the world, the

sender has an additional choice: send a new signal. A new signal is

always available. The sender can either send one of the existing

signals or send a new one. Receivers always pay attention to a new

signal. (A new signal means new signal that is noticed, failures being

taken account of by making the probability of a successful

new signal smaller.) Receivers, when confronted with a new signal,

just act at random. We equip them with equal initial propensities

for the acts.

Now we need to specify exactly how learning proceeds.

Nature chooses a state and the sender either chooses a new

signal, or one of the old signals. If there is no new signal the

model works just as before. If a new signal is introduced, it

either leads to a successful action or not. When there is no

success, the system returns to the state it was in before the

experiment with a new signal was tried.

15 We note that the same kind of urn model could be used for inventing new actions on

the part of the receiver. But if this were done, we would need to specify the payoffs of

potential new actions in each state. There is no general principled way to do this, although in

specific applications there might be some plausible approach.

Pólya Urn Hoppe-Pólya Urn 

is to as is to

Reinforcement Learning Reinforcement
with Invention 

Figure 10.3: Urn models.
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But if the new signal leads to a successful action, both sender and

receiver are reinforced. The reinforcement now constitutes the

sender’s new initial propensity to send the signal in the state in

which it was just sent. The receiver now begins keeping track of the

success of acts taken upon receiving the new signal. In terms of the

urn model, the receiver activates an urn for the signal, with one ball

for each possible act, and adds to that urn the reinforcement for the

successful act just taken. The sender now considers the new signal

not only in the states in which it was tried out, but also considers it a

possibility in other states. So, in terms of the urn model, a ball for

the new signal is added to each sender’s urn, in addition to the

reinforcement ball added to the urn for the state that has just

occurred.16 The new signal has now established itself. We have

16 We could add a fractional ball, and make fraction a parameter to adjust the strength of

the sender’s generalization of the new signal from one situation to another. Here we just stick

to the simplest formulation where strength of generalization is one.

Before Successful Invention

After Successful Invention

(in State 2 with Act 2)

Sender Urn 1: R, G, B

Sender Urn 2: R, G, B

Receiver Urn R: A1, A2

Receiver Urn Y: A1, A2, A2

Sender Urn 1: R, G, B, Y

Sender Urn 2: R, G, B, Y, Y

Receiver Urn R: A1, A2

Receiver Urn G: A1, A2

Receiver Urn G: A1, A2

Figure 10.4: In state 2 a black ball is drawn, act 2 is tried and is successful.
A yellow ball is added to both senders’ urns and a reinforcement yellow
ball is added to the urn for state 2.The receiver adds an urn for the signal
yellow, and adds an extra ball to that urn for act 2.
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moved from a Lewis signaling game with N signals to one with

Nþ1 signals.
In summary, one of three things can happen:

1. No new signal tried, and the game is unchanged. Reinforce-

ment proceeds as in a game with a fixed number of signals.

2. A new signal is tried but without success, and the game is

unchanged.

3. A new signal is tried with success, and the game changes from

one with n states, m signals and o acts to one with n states, mþ1
signals, o acts.

Starting with nothing

If we can invent new signals, we can start with no signals at all, and

see how the process evolves. Consider the three-state, three-act

Lewis signaling game with states equiprobable. As before, exactly

one act is right for each state. We can gain some insight into this

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 10.5: Number of signals after 100,000 iterations of reinforcement
with invention. Frequency in 1,000 trials.
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complicated process from our understanding of the Hoppe urn. In

fact, once senders learn to signal successfully in a given state, the

sender’s urn for that state is a Hoppe urn.

If we ran the process forever, we would end up with an infinite

number of signals. But if we run a large finite number of iterations,

we would expect a not-so-large number of signals. In simulations of

our model of invention, starting with no signals at all, the number

of signals after 100,000 iterations ranged from 5 to 25. (A histogram

of the final number of signals in 1,000 trials is shown in figure 10.5.)

Avoiding pooling traps

Recall that in a version of this game with the number of signals

fixed at 3, classical reinforcement learning sometimes falls into a

partial pooling equilibrium. In basic Roth–Erev reinforcement

learning with initial propensities of 1, about 9% of the trials led to

imperfect information transmission. Using reinforcement with

invention, starting with no signals, 1,000 trials all ended up

with efficient signaling. Signalers went beyond inventing the

three requisite signals. Lots of synonyms were created. By in-

venting more signals, they avoided the traps of partial pooling

equilibria.

And recall that in the game with two states, two acts, and the

number of signals fixed at 2, if the states had unequal probabilities

agents sometimes fell into a total pooling equilibrium—in which

no information at all is transmitted. In such an equilibrium the

receiver would simply do the act suited for the most probable state

and ignore the signal and the sender would send signals with

probabilities that were not sensitive to the state. The probability

of falling into total pooling increased as the disparity in probabilities

became greater. When one state has probability .6, failure of infor-

mation transfer hardly ever happens. At probability .7 it happens 5%

of the time. This number rises to 22% for probability .8, and 44%
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for probability .9. Highly unequal state probabilities appear to be a

major obstacle to the evolution of efficient signaling.

If we take the extreme case in which one state has probability .9,

start with no signals at all, and let the players invent signals as above

they reliably learn to signal. In 1,000 trials they never fell into a

pooling trap; they always learned a signaling system. They invented

their way out of the trap. The invention of new signals makes

efficient signaling a much more robust phenomenon.

Synonyms

Let us look at our results a little more closely. Typically we get

efficient signaling with lots of synonyms. How much work are the

synonyms doing? Consider the following trial of three-state, three-

act signaling game, starting with no signals and proceeding with

100,000 iterations of learning with invention.

Trail 2:

signal 1 probabilities in states 0,1,2 0.00006, 0.71670, 0.00006

signal 2 probabilities in states 0,1,2 0.00006, 0.28192, 0.00006

signal 3 probabilities in states 0,1,2 0.09661, 0.00006, 0.00080

signal 4 probabilities in states 0,1,2 0.00946, 0.00042, 0.00012

signal 5 probabilities in states 0,1,2 0.86867, 0.00012, 0.00006

signal 6 probabilities in states 0,1,2 0.00006, 0.00006, 0.81005

signal 7 probabilities in states 0,1,2 0.02393, 0.00006, 0.00012

signal 8 probabilities in states 0,1,2 0.00006, 0.00006, 0.14338

signal 9 probabilities in states 0,1,2 0.00006, 0.00018, 0.04449

signal 10 probabilities in states 0,1,2 0.00012, 0.00006, 0.00043

signal 11 probabilities in states 0,1,2 0.00012, 0.00012, 0.00006

signal 12 probabilities in states 0,1,2 0.00054, 0.00012, 0.00018

signal 13 probabilities in states 0,1,2 0.00018, 0.00006, 0.00012
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Notice that a few of the signals (shown in boldface) are doing most

of the work. In state 1, signal 5 is sent 87% of the time. Signals 1 and

2 function as significant synonyms for state 2, being sent more than

99.5% of the time. Signals 6 and 8 are the major synonyms for state

3. The pattern is fairly typical. Very often, many of the signals that

have been invented end up little used. This is just what we should

expect from what we know about the Hoppe urn. Even without

any selective advantage, the distribution of reinforcements among

categories tends to be highly unequal, as was shown in figure 10.2.

Might not infrequently used signals simply fall out of use entirely?

Noisy forgetting

Nature forgets things by having individuals die. Some strategies

(phenotypes) simply go extinct. This cannot really happen in the

replicator dynamics—an idealization where unsuccessful types get

rarer and rarer but never actually vanish. And it cannot happen in

Roth–Erev reinforcement where unsuccessful acts are dealt with in

much the same way.

Evolution in a finite population is different. In the models of

Sebastian Shreiber,17 a finite population of different phenotypes is

modeled as an urn of balls of different colors. Successful reproduc-

tion of a phenotype corresponds to the addition of balls of the same

color. So far this is identical to the basic model of reinforcement

learning. But individuals also die. We transpose the idea to learning

dynamics to get a model of reinforcement learning with noisy

forgetting.

For individual learning, this model may be more realistic than

the usual model of geometrical discounting. That model, which

discounts the past by keeping some fixed fraction of each ball at

each update, may be best suited for aggregate learning—where

individual fluctuations are averaged out. But individual learning is

17 Shreiber 2001.
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noisy, and it may be worth looking at an urn model of individual

reinforcement with noisy forgetting.

Inventing and forgetting signals

We put together these ideas to get learning with invention and with

noisy forgetting, and apply it to signaling. It is just like the model of

inventing new signals except for the random dying-out of old

reinforcement, implemented by random removal of balls from the

sender’s urns.

The idea may be implemented in various ways. Nature might,

with some probability, pick an urn at random, pick a ball from it at

random and throw it away. (The probability is the forgetting rate.)

Or alternatively, Jason McKenzie Alexander suggests that nature

pick an urn at random, pick a color in that urn at random, and

throw a ball of that color away. Either way, there is one less ball in

that urn and the trial is over.

Now, it is possible that the number of balls of one color, or even

balls of all colors could hit zero in a sender’s urn. Should we allow

this to happen, as long as the color (the signal) is represented in

other urns for other states? There is another choice to be made

here. If the number of balls of a certain color is zero in all sender’s

urns, then the corresponding signal is extinct and the receiver’s urn

corresponding to that signal dies out.

There is a lot of territory to explore in these forgetting models.

Preliminary simulations suggest the following. The first kind of

forgetting that we took from finite population evolution (balls

removed with equal probability) doesn’t change the distribution

of signals much at all. Usage of synonyms continues to follow a kind

of power law distribution, with little-used signals persisting. This

makes sense, because mostly it is the frequently used signals that are

dying. But Alexander’s kind of forgetting can be remarkably effec-

tive in pruning little-used signals without disrupting the evolution

of efficient signaling. Often, in long simulation runs, we get close to
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the minimum number of signals needed for an efficient signaling

system.

Inventing new signals

We now have a simple, tractable model for the invention of new

signals. It can be easily studied by simulation, and connections with

well-studied processes from population genetics suggest that ana-

lytic results are not completely out of reach. It invites all sorts of

interesting variations. Even the most basic model has interesting

properties, both by itself and in combination with forgetting.
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Networks I: Logic and
Information Processing

Logic

David Lewis wroteConvention in order to use game theory to answer

the skeptical doubts about the conventionality of meaning raised by

the great American philosopherWillard van OrmanQuine. Quine’s

skepticismwas directed at the logical positivists’ conventional theory

of meaning in the service of a conventional theory of logic. Accord-

ing to the logical positivists, logical truths were true and logical

arguments valid by virtue of the meanings of the terms involved.

Quine argued that positivist accounts of convention (by explicit

or implicit definition) required the pre-existence of logic. Lewis

replied that the existence of a convention can be thought of in a

different way, as a strong kind of equilibrium or near-equilibrium

in a signaling game played by a population. Lewis did not himself

supply an account of how a population might get to signaling-

system equilibrium, but we have seen how to do so.

This leaves the question of whether the account thus established

in any way supports the doctrine of the conventionality of logic,

whose refutation was Quine’s ultimate goal. In so far as one’s view

of logic is expansive—some positivists viewed all of mathematics as

logic—the project may seem Quixotic. We begin with the more

modest goal of seeing whether we can get some logic out of

information transfer in sender-receiver games.



I advanced some tentative suggestions in previous work.1 These

involve modifications to the basic Lewis signaling setup. First, the

sender may not observe the state of the world exactly. Her obser-

vation may rule out some possibilities while leaving a class of others

viable. For example, a vervet monkey may detect the presence of

a ground predator—leopard or snake—without being able to see

which it is. If this happens often enough and if, as is quite possible,

the receiver’s optimal action given this information is different from

both the optimal action for a leopard or for a snake, it is plausible

that a special signal could evolve for this sender’s information state

in exactly the same way as in the original signaling games. I call such

a signal proto truth-functional because one way of giving its meaning is

by the truth function “leopard or snake”—even though the signal

itself is just a one-word sentence. Let us postulate a rich signaling

environment in which lots of proto-truth functional signals have

evolved.

The second modification is to consider multiple senders, each in

possession of a different piece of relevant information. For example,

suppose one sender on the ground—seeing a movement of grass—

sends the proto-truth function “leopard or snake,” and another

sender, from the vantage point of a tree, sends the proto-truth

function “no leopard.” (Negative signals that cancel part of an

alarm call are not unknown in animal signaling, as we saw in

Chapter 2.) Selection favors the receiver who takes the evasive

action appropriate for a snake. Such a receiver has performed—or

acts as if she has performed—logical inference.

This story was put forward in a tentative and preliminary spirit,

and it leaves several important questions hanging. The proto-truth

functions were assumed to have already evolved. Could they co-

evolve with logical inference, or are they required to exist already?

Where are the precise models? Where is their analysis in terms of

evolutionary or learning dynamics? We are now in a position to

address these questions, and to generalize the account.

1 Skyrms 2000, 2004.
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Information processing

It is best to think of our two-sender, one-receiver model as an

especially simple case of a problem of information processing. Multiple

senders send signals that convey different pieces of information and

the receiver can benefit from integrating this information. Let us

consider some simple examples.

1. Inventing the Code:

Suppose that there are four equiprobable states of nature, and that

two individuals are situated to make incomplete observations of the

state. The first sees whether it is in {S1, S2} or in {S3, S4} and the

second sees whether it is in {S1, S3} or in {S2, S4}. Together they

have enough information to pin down the state of nature, but

separately they do not. Each sends one of two signals to a receiver

who must choose one of four acts. The payoffs favor cooperation.

Exactly one act is “right” for each of the states in that each of the

individuals is reinforced just in case the “right” act for the state is

chosen.

I will not assume here, as I did in the story at the beginning of this

chapter, that a convention has already been established for the

signals used by the senders. We will make things a little harder

and require that the content of the signals evolve together with the inference.

You could think of sender 1 as waving either a red or a green flag

and sender 2 as waving either a yellow or a blue one.2

A signaling system in this extended Lewis signaling game is a

combination of strategies of the three players, two senders and

one receiver, such that the receiver always does the right thing

for the state. If we run simulations of reinforcement learning,

starting with everyone out acting at random, the three individuals

typically fall rapidly into one of the possible signaling systems.

2 The receiver will have to be able to differentiate information from the two senders, since

they are placed to make different observations.
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Consider the flow of information in these signaling systems.

Each sender’s signal conveys perfect information about her obser-

vation—about the partition of states of the world that she can see.

The combination of signals has perfect information about the states

of the world. Exactly one state corresponds to each combination of

signals. And the receiver puts the signals together. The receiver’s

acts contain perfect information about the state of the world.

2. Inventing the Categories and the Code:

In the foregoing example, we postulated the categories that the

senders can observe and thus those that could be embodied in their

signals. For example, sender 1 can at best convey the information

that the world is in one of the first two states or that it is not. That is

all that she can see. In a remarkable analysis, Jeffrey Barrett con-

siders a model where the two senders and one receiver need to

interact to spontaneously invent both the categories and the code in

order to achieve a signaling system.3

In Barrett’s game there are four states and four acts, just as before,

but each sender can observe exactly the true state of the world.

Although each sender now has perfect information, each has only

two signals available. There are two information bottlenecks. To

achieve a signaling system our three individuals face a daunting task.

Senders need to attach their signals to categories in such a way that

these categories complement each other and jointly determine the

state of the world. The receiver needs to extract the information

from these signals. Receivers need to learn at the same time that

senders are learning how to categorize, and senders need to learn

their complementary categorizations while receivers are learning to

extract information from the combination of signals received.

In a signaling system, sender 1might send her first signal in states

1 and 2 and her second signal otherwise, and sender 2 might send

her first signal in states 1 and 3 and her second otherwise. (These

are just the categories imposed by observational restrictions in

3 Barrett 2007a, 2007b.
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example 1.) But alternatively sender 1 might lump states 1 and 4

together for one signal and states 2 and 3 for another which,

together with the same receiver’s strategy, would let the combina-

tion of signals peg the state of the world.

To my considerable surprise, Barrett found that Roth–Erev rein-

forcement learners reliably learned to optimally categorize and signal.

The categories formed depended on the vicissitudes of chance—

sometimes one set, sometimes another—but they always complemen-

ted one another in a way that allowed the receiver to do the right

thing. Consider the flow of information in the signaling-system equi-

libria in Barrett’s game. Sender’s signals do not convey perfect infor-

mation about their observations, but only partial information.

Nevertheless, the combination of signals has perfect information

about the states of the world. Exactly one state corresponds to each

combination of signals. And the receiver puts the signals together. The

receiver’s acts contain perfect information about the state of theworld.

Senders have learned to cooperate so as to jointly send the

maximal information. The receiver has learned to interpret the

signals. She has also, in a way, learned to perform a most basic

logical inference: from premises p, q to infer the conjunction p & q.

3. Extracting Relevant Information

Appropriate information processing depends on the character of the

payoffs. Let us revisit example 1. The two senders again have their

categories fixed by observation. Sender 1 can see whether the world

is in one of the first two states or not; sender 2 can see whether the

state is odd numbered or even numbered. We modify the example

so that there are only two relevant acts with the following payoffs:

Act 1 Act 2

State 1 0 1

State 2 1 0

State 3 1 0

State 4 0 1
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Optimal signaling requires the receiver to do act 1 in states 2 and

3 and act 2 otherwise. Although there are only two acts now, the

receiver cannot rely on only one sender, since neither has sufficient

information. The senders have information about their own

categories—their own partitions of the states of the world—but

the receiver needs information about a different partition. Rein-

forcement learners, starting with random exploration, learn optimal

signaling here just as well and just as quickly as in the previous

examples.

Given optimal signaling, where players are always reinforced,

each sender’s signal here carries perfect information about her

observation and the combination of signals singles out the state of

the world. But the receiver’s act contains only partial information

about the state. It is “only as informative as is required” by the

pragmatic considerations embodied in the reinforcement structure.

The receiver has learned to extract the information that is relevant

and to ignore that which is irrelevant.

This operation of filtering out the irrelevant and keeping the

relevant is one of the fundamental operations of information pro-

cessing. Our sensory systems receive an enormous amount of

information, only a small fraction of which is passed on to the

brain. Our olfactory system, for instance, contains receptors exqui-

sitely tuned to respond to individual molecules. This information is

filtered and integrated so that only relevant information makes it to

the central processing unit.

We can also see our little example from different perspectives.

From the viewpoint of truth-functional logic, the receiver has had

to learn how to compute the truth-value of the exclusive disjunc-

tion, “xor”, from the truth values of its constituents. Sender 1

observes whether p is true; sender 2 observes whether q is true.

The act that pays off is act 1 if p xor q, act 2 if not.

We can look at our example in terms of logical inference. The

receiver has—in a way—learned to infer p xor q from the premises

p, not-q, its denial from the premises p, q, and so forth. The

inferences are not just valid inferences, but also the relevant valid
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inferences for the task at hand. Receivers can learn to compute

other truth functions and to perform other inferences in just the

same way.

4. Error: Taking a Vote

So far, our senders have been infallible observers of the state of the

world. They may not have seen everything, but what they think

they have seen they have indeed seen. Senders’ strategies so far have

been based on the truth, if not always the whole truth. In the real

world there is observational error.4

If there is imperfect observation, it may make sense to ask for a

second or third opinion. Consider the most basic Lewis signaling

game, with two equiprobable states, two signals and two acts, but

with three senders. Each sender observes the state, but with some

error—errors independent—and sends a signal to the receiver.

Then the receiver chooses an act.

It is not possible for signals to carry perfect information about the

state. Error is endemic to the model. It is not possible for a signaling

system to assure that the receiver always gets it right. But it is

possible for an equilibrium to minimize the effects of error. The

senders can convey perfect information about their fallible observa-

tions, and the receiver can pool this information to make the best

choice. The optimal receiver’s strategy is then to take a vote. If the

majority of senders “say” it is state one, then the receiver should do

act one; if a majority of senders “say” it is state 2 then the receiver

should do act 2. We could call this sort of equilibrium a “Condorcet

signaling system.” Taking a vote allows a significant improvement

over the payoffs attainable with only one sender.

For example, with an error rate for observations of 10%, our

receiver will have an error rate of less than 3%. Simulations of

Roth–Erev learning for this example show individuals always

4 Nowak and Krakauer 1999 consider a different kind of error, receiver’s error in

perceiving the signal. They suggest that minimizing this kind of error played an important

role in the evolution of syntax.
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converging to a Condorcet equilibrium.5 With a few more senders

the error rate can be driven very low, as the Marquis de Condorcet

pointed out in 1785.6

Logic and information processing

When multiple senders convey different information to a receiver

(or to multiple receivers) the receiver is confronted with a problem

of information processing. Howdoes one take all these inputs and fix

onwhat to output—what to do? Logical inference is only part of this

bigger problem of information processing. It is a problem routinely

solved every second by our nervous system as floods of sensory

information are filtered, integrated, and used to control conscious

and unconscious actions. We have seen how a few rudiments of this

process can emerge from simple adaptive dynamics.

Logic redux: Chrysippus’ hunting dog

If we consider basic logic as information processing rather than as

something living in Plato’s ideal realm, the emergence of logic

appears much less mysterious. Logic may be conscious or uncon-

scious. There is no reason to think of it as the sole possession of

humans. This way of looking at logic is not new. It has been

debated since Hellenistic times. Consider Chrysippus’ hunting dog.

According to Sextus Empiricus, Chrysippus tells the story of a

dog that, not unlike my hypothetical vervets at the beginning of

this chapter, performs a disjunctive syllogism:

5 Simulations by Rory Smead, reported in supporting matter for Skyrms 2009.
6 In his Essay on the Application of Analysis to the Probability of Majority Decisions, Condorcet

assumes a jury decides a matter of fact by majority vote, probability that jurors are correct is

greater than .5, and jurors’ errors are independent. Then the probability of a correct decision
approaches certainty as the size of the jury goes to infinity.
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And according to Chrysippus, who shows special interest in irrational

animals, the dog even shares in the far-famed “Dialectic.” This person, at

any rate, declares that the dog makes use of the fifth complex indemon-

strable syllogism when, arriving at a spot where three ways meet, after

smelling at the two roads by which the quarry did not pass, he rushes off at

once by the third without stopping to smell. For, says the old writer, the

dog implicitly reasons thus: The creature went either by this road, or by

that, or by the other: but it did not go by this road or by that: therefore it

went by the other.7

You could think of the dog’s brain getting signals from his eyes and

from his nose, and having to integrate the resulting pieces of

information.

Chrysippus himself did not think that the dog reasoned, holding

to the Stoic position that animals, unlike humans, do not have

reason (logos). He held instead that the dog acts as if he could reason.

He thus opposes the view of Sextus. This frames a debate that has

come down through the history of philosophy8—Descartes on the

side of the Stoics, Hume on the side of the skeptics.9 Luciano

Floridi recounts a report of a debate on the subject organized for

King James I at Cambridge in 1614. The question of the debate was

whether dogs could make syllogisms. John Preston took the skeptic

position and Matthew Wreb the stoic side. King James concluded

“that Wreb had to think better of his dogs or not so well of

himself.”10 You will have your own opinion. I am with David

Hume and King James.

7 Sextus Empiricus, Outlines of Pyrrhonism ch. XIV.

8 See Floridi 1997 for the detailed story.

9 Hume 1793, Bk I Pt III Sec XVI.

10 Mayor 1898, quoted in Floridi 1997.
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Complex Signals and
Compositionality

Humans are not restricted to one-word sentences, but rather can

construct complex utterances whose content is a function of the

content of their parts. This capability has sometimes been claimed

to set man apart from beast. Such claims are somewhat overblown.1

Birdsongs often string together in complex ways, and in some birds

these are ways in which the content of the parts contributes to the

content of the whole. Monkeys in the wild show some rudimentary

steps in this direction. Domesticated apes, parrots, and dolphins

have done more. Humans have gone much further down this

road than other animals, but the use of complex signals is not

unique to humans.

We try to understand the first step in this journey—the move

from simple atomic signals to signals composed of parts. If one has

little to communicate, simple signals may be perfectly adequate.

But if one has a lot to say, complex signals introduce obvious

economies. A lot can be communicated using combinations of a

few basic parts. If it costs something to maintain a signal, there are

obvious economies to be had by using complex signals. Martin

Nowak and David Krakauer argue that complex signals may, in

addition, increase the fidelity of information transmission, by pre-

venting simple signals getting crowded together as the perceivable

1 As we have seen in Chapter 2.



space of potential signals gets filled up.2 By recombining parts, one

can routinely construct new signals. Complex signals may make it

easier to learn a signaling system, especially if the content of a

complex signal is a function of the contents of its parts. Complex

signals can facilitate information processing—as is evident from the

development of formal logic. Complex signals can certainly be

useful in many ways. It is not difficult to construct models where

they confer an evolutionary advantage in a context where rich

information exchange is important. We can suppose that if we

have them they will confer a Darwinian advantage. But how

could they arise in the first place?

There are contributions to the literature that address this ques-

tion. John Batali investigates the emergence of complex signals in

populations of neural nets.3 Simon Kirby extends the model in a

small population of interacting artificial agents.4 These models

assume structured mental meanings that are meant to be conveyed

by the sender in the signal string, and structured meanings that the

receiver gets from interpreting the signal string, and a way to

compare sender’s meaning to speaker’s meaning to determine suc-

cess or failure.5 Structured meanings like <John, loves, Mary>

could, in principle, be conveyed by one-word signals, but systems

of structured signals are observed to evolve.

These are important contributions to the problem. Here, how-

ever, I want to start at an earlier point in the evolution of signaling.

I am interested in how one might come to have—in the most

primitive way—a complex signal composed of simple signals.

2 See Nowak and Krakauer 1999.
3 Batali 1998.
4 Kirby 2000.
5 As Kirby 2007 succinctly puts it:

Early models such as Batali 1998 and Kirby 2000 involved populations of individual

computational agents. These agents were equipped with: explicit internal representations of

their languages (e.g. grammars, connectionweights, etc.); a set ofmeanings (provided by some

world model) about which they wished to communicate; mechanisms for expressing signals

for meanings using their linguistic representations; and algorithms for learning their language

by observing meaning-signal pairs (e.g. grammar induction, back propagation, etc.).
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And I would like to do this with the smallest departure possible

from signaling models that have been previously examined in this

book.

We have seen how a receiver can process different information

from multiple senders. Multiple senders need not be different

individuals, but could instead be the same individual at different

times. A monkey who sees the grass move and sends the “leopard or

snake” alarm call might run up a nearby tree and then be able to see

that there is no leopard. It could then be able to send a signal to that

effect. What is important is that there are separate pieces of infor-

mation, not separate individuals sending them. The information

processing problem faced by the receiver is exactly the same in both

cases.

Let us revisit the inventing the code model from the last chapter.

One sender observes whether the situation is up or down and sends

the signal red or green. Another sender observes whether the state

of the world is left or right and sends the signal yellow or blue.

Interactions with a receiver who needs both pieces of information

to make an optimal decision can lead to a complex signaling system.

The receiver treats the juxtaposition of two signals as conjunction,

which is simply to say that they are treated as two pieces of

information to be integrated. In a community of individuals who

are sometimes in one observational situation sometimes in another,

this complex signaling system can become fixed.

If it is fixed, receivers have a fixed interpretation of pairs of

signals. Suppose, for instance that the system is:

Red ¼> Top

Green¼> Bottom

Yellow¼> Left

Blue ¼> Right

In such a community, a sender who is well placed enough to

observe that the state of the world is exactly <Bottom, Left> can

communicate this by sending a complex signal consisting of green

and yellow, in any order. This leads to a primitive signaling system
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that exhibits a simple kind of compositionality. The information in a

complex signal is a function of the information in its parts. It is not

so far from integration of information from separate signals to the

integration of information from separate parts of a complex signal.

The next stage in the development of compositionality is sensi-

tivity to order.

This is the key that opens the door to richer compositionality:

subject–predicate or operator–sentence. But sensitivity to temporal

order is something many organisms have already developed in

responding to perceptual signals. The efficient frog reacts different-

ly to first fly left, next fly center than to perceptual signals in the

opposite order.

More generally, we can say that temporal pattern recognition is a

fundamental mechanism for anticipating the future. In the second

stage of compositionality, this general-purpose mechanism is re-

cruited to allow more complex signaling systems. We see begin-

nings of this process in bird calls.

Once we have sensitivity to order in complex signals, it is

possible to have prototypes of sentential operators. Recall the

“boom-boom” operator of Campbell’s monkeys discussed in

Chapter 2. The alarm call for a predator is prefaced by two low

“boom” calls when the predator is distant and not an immediate

danger. There is a basic signal, which is modified by what we

would view as an operator. Much of the data on complex signals

in the wild is quite recent. That is because investigators have looked

for what isn’t supposed to be there.

Some philosophers seem desperate to draw a line between hu-

mans and other animals—I have never understood why. However

that may be, the line isn’t here. We already find rudiments of

compositionality in animal signaling, and once we have this then

the evolutionary advantages of compositional signaling systems that

have been noted in the literature can come into play. Why then,

haven’t lots of animals developed language? Perhaps they don’t

have that much to say. Their signaling systems are adequate to

their needs.
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Networks II: Teamwork

Giant moray eels and groupers are both predators of fish in the Red

Sea. Groupers take their prey in open water. Moray eels take theirs

in crevices in the reef. Redouin Bshary, Andrea Hohner, Karim

Ait-el-Djoudi, and Hans Fricke describe cooperative hunting

between eels and groupers.1 If a prey fish eludes a grouper by

entering a crevice, the grouper may approach a moray eel, signal

it using special head movements, and lead it to the fish’s location.

The eel will pursue it in the reef and either catch it or drive it out. If

it comes out the grouper gets it. The proportion of times eel and

grouper get fed is about equal, and cooperative hunts are more than

twice as likely as solitary hunts to bag a prey.

Cooperative hunting within a species has been observed in lions,

chimpanzees, dolphins, and hawks. Even the lowly bacterium Myx-

ococcus xanthus engages in a kind of cooperative hunting, in which

chemical signals are used to coordinate attack.2They swarm over prey

microorganisms, excrete enzymes to digest them, and absorb the

nutrients. Cooperative hunting is one example of teamwork in ani-

mals and men. So is cooperative defense, as when wildebeest form a

protective circle with young in the center, or birds mob a predator. So

are cooperative foraging, rearing of young, or building of communal

habitation. Any multicelled organism is a marvel of teamwork.

1 Bshary et al. 2006.
2 Berleman et al. 2008.



In some teamwork problems, such as mobbing a predator or

swarming prey, a uniform action by all members of the team

produces the requisite effect. Others call for a more sophisticated

teamwork, involving a division of labor and coordination of tasks.3

Division of labor may involve morphological differentiation. We

see this in various ways in the castes of insect societies, in cells and

organs of the body, and even in differentiation of soma and spore in

reproduction of Myxococcus xanthus.

In contrast, division of labor among morphologically similar

individuals is central to human economic activity. But it is also

found in many other species. Consider, however, group hunts of 3

or 4 lionesses in Etosha National Park, Namibia.4 Two lionesses,

the wings, attack a group of prey from either side, panicking them to

run forward. They run right into one or two other lionesses,

positioned as centers, who are waiting for them. This sort of hunting

is highly successful. Variations on this kind of cooperative hunting

with specialized roles have been observed in many other species.5

Bottle-nosed dolphins near Florida engage in group hunts where

one individual acts as a driver and herds fish into a circle formed by

the rest of the dolphins who act as barrier, preventing the fish from

escaping.6 Herding into a barrier is implemented in a different way

by humpback whales. One whale swims in circles underwater

blowing a “curtain” of bubbles. The other whales herd fish into

this virtual trap from below and drive them up to the surface where

all feed.

For many tasks the use of signals is crucial in establishing the

coordination needed for effective teamwork. Teamwork may in

some circumstances be achieved by a simple exchange of signals

between equals. In other situations a good team may need a

leader.

3 Anderson and Franks 2001 require division of labor in their definition of teamwork.

4 Stander 1992.
5 Dugatkin 1997; Anderson and Franks 2001.
6 Gazada et al. 2005.
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Quorum-sensing revisited

In quorum-sensing by bacteria there are many senders and re-

ceivers, and each individual is both a sender and receiver. Each

individual must judge the number (or intensity) of ambient signals,

and take the appropriate action when the intensity is high enough.

Signaling in the real process is incredibly complex both between

cells and within cells, and very far from our toy models of signaling.

At the simplest level, nature chooses the number of individuals.

Each individual continually sends out a low level of signal. Indivi-

duals can observe the intensity (or number in a discrete model) of

ambient “I am here” signals. Thus, everyone signals everyone. In-

dividuals either turn on genes to produce light or not—we don’t ask

how. The payoff depends on the number of bacteria producing light.

If just a few do, the effort is wasted and the squid perhaps is eaten. If a

lot do, the effort is rewarded. We assume a threshold of individuals

below which the payoff is zero and above which it is one.

Assuming for the moment (and contrary to fact) that the sending

strategy is fixed, bacteria need only to evolve a receiver’s strategy

that switches the lights on if the incoming number of signals is

above the quorum level, and to switch them off if it is below that

level. Pushing ahead with shameless oversimplification, receivers’

payoffs are 1 if they all switch the lights on above the quorum and

off below the quorum, and zero otherwise. At this level, the

problem is related to that of “taking vote” that we considered

earlier, but it is even simpler, since there is no alternative sender’s

strategy. Evolution, learning, or any reasonable adaptive dynamics

will have no trouble learning it.

So everything would be easy if signals were discrete, payoffs

were step functions, and bacteria could count. The world inside

the light organ of the squid is much more complicated. The signal is

a small diffusible molecule, and the number of such molecules

would be too great for simple organisms to count, even if they

could count. The signal input is more like a continuous variable

than a discrete number (or rate) of signals received. The required
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output is binary—light or no light—or close to it. Transient fluc-

tuations due to chance shouldn’t cause useless flickering on and off.

Nature is faced with designing a robust bi-stable switch which turns

the lights on and off in approximate synchrony and at approximate-

ly the optimal concentration of bacteria.

A fairly general way to do this, well known in engineering, is to

use a positive feedback loop. An input—output function that

would otherwise be linear is modified by feedback to produce a

“switch” function with some “stickiness” to activation to resist

noise. Suppose the optimal point for the light to switch on or off

is a concentration x. If the lights are on, a little positive feedback

keeps them on for concentrations a little below x. If the lights are

off a little positive feedback keeps them off a little above x.

Quorum-sensing bacteria have discovered the positive feedback

trick. The signaling molecule is an autoinducer. The more “I am

here” messages you get, the more you send. From a game theory

point of view, we now have gradations of sender strategies, where

number of signals sent depends on number of signals received. The

whole story is really much more complicated than this, involving

multiple feedback loops.7 The basic biochemistry implementing

this strategy is different in gram-negative and gram-positive bacte-

ria, but the basic idea is the same. The construction of a robust

bi-stable switch using feedbacks is not only used in quorum-sensing

bacteria, but is one of the basic motifs found throughout biological

signaling systems.8

Homeostasis

Another ubiquitous example of teamwork is the coupling of send-

er, receiver, and nature in a negative feedback loop to achieve

homeostasis. Here is a maximally simplified model. Nature presents

7 Goryachev et al. 2006.
8 Alon 2006; Goryachev et al. 2006; Brandman and Meyer 2008.
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one of three states to the sender: too hot, too cold, or just right. The

sender chooses one of three messages to send. The receiver chooses

one of three acts: turn up the heat, turn down the heat, don’t change it.

The receiver’s acts modify the state in the obvious way:

Things stay put for a while, but exogenous shocks occasionally

perturb the state. The optimal action for a state obviously is one that

leaves the state being just right. We give this a positive payoff and all

others zero payoff.

A signaling-system equilibrium is one which always leads to this

optimal action.

It is no more difficult for adaptive dynamics to arrive at such a

homeostatic signaling system than to learn the three-state, three-signal,

three-act signaling systems of earlier chapters.

More complex homeostatic signaling systems occur through-

out our bodies, such as the blood glucose regulatory system with

the pancreas in the role of sender, the liver in the role of receiver,

and the hormones glucagon and insulin in the role of signals. All

these systems—regulation of fluid volume, blood ion concentra-

tions, and the rest—require one or more sensors (senders), one

or more effectors (receivers), and signals from the former to the

latter.

ACT OLD STATE NEW STATE

Turn up Too Cold ¼> Just Right

Just Right ¼> Too Hot

Too Hot ¼> Too Hot

Don’t Change Too Cold ¼> Too Cold

Just Right ¼> Just Right

Too Hot ¼> Too Hot

Turn Down Too Cold ¼> Too Cold

Just Right ¼> Too Cold

Too Hot ¼> Just Right
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Dialogue

So far, senders were presented with information and, at most, had

to decide what to send.9 Let us consider a more interactive situation

in which receivers can ask for information and senders can seek it

out. We can suppose that the sender’s observational partition is not

fixed. The sender can choose which observation to make. That is to

say, she can choose which partition of states to observe. Suppose

also, that the receiver’s decision problem is not fixed. Nature

chooses a decision problem to present to the receiver. Different

sorts of information are relevant to different decision problems.10

Knowing the actual element of partition A (the element that con-

tains the actual state) may be relevant to decision problem 1, while

knowing the actual element of partition B may be relevant to

decision problem 2. This opens up the possibility of signaling

dialogue, where information flows in two directions.

In the simplest sort of example, nature flips a coin and presents

player 2 with one or another decision problem. Player 2 sends one

of two signals to player 1. Player 1 selects one of two partitions of

the state of nature to observe. Nature flips a coin and presents player

1 with the true state. Player 1 sends one of two signals to player 2.

Player 2 chooses one of two acts.

Suppose that there are four states {S1, S2, S3, S4}, with alterna-

tive partitions:

P1¼ {{S1, S2}, {S3, S4}}, P2¼ {{S1, S3}, {S2, S4}}, as shown

below:

P1:

S1 S2

S3 S4

9 “Decide” being perhaps metaphorical, since our agents may or may not be making

conscious decisions.

10 Compare van Rooy 2003, who argues that the pragmatics of decision can be used to

disambiguate questions in such conversational contexts.

154 SIGNALS: EVOLUTION, LEARNING, AND INFORMATION



The two decision problems require choices in different act sets:

{A1, A2} for the first decision problem and {A3, A4} for the

second. Payoffs for the two decision problems are:

Player 2 has a signal set {R, G} and player 1 has a signal set {B, Y}.

A strategy for player 2 now consists of three functions, one a sender

strategy from {P1, P2} into {R,G}, one a receiver strategy from

{B,Y} into {A1, A2}, one a receiver strategy from {B,Y} into {A3,

A4}. In a signaling-system equilibrium each player always gets a

payoff of one. The possibility of dialogue introduces a plasticity of

signaling that is absent in fixed sender-receiver games. Signaling

systems are strict, and evolutionarily stable as before.

Signaling systems can evolve in the dialogue interaction in

isolation, but simulations show this process to be very slow. Evolu-

tion of a signaling system is much easier if we assume that some of

its components have evolved in less complicated interactions. Play-

er 1 may already have signaling systems in place for the two

different observational partitions as a consequence of evolution in

simple sender-receiver interactions. If so, the evolution of dialogue

only requires that the second player signal the problem and the first

choose what to observe. This is no more difficult than evolution of

a signaling system in the original Lewis signaling game.

Decision 1 Decision 1 Decision 2 Decision 2

Act 1 Act 2 Act 3 Act 4

State 1 1 0 1 0

State 2 1 0 0 1

State 3 0 1 1 0

State 4 0 1 0 1

P2:

S1 S2

S3 S4
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Team leader I

It is sometimes the case that a well-placed sender knows what needs

to be done, and can send messages to receivers who can act, but that

no one receiver can do everything that needs to be done. It may

also be the case that success requires division of labor. Receivers

need to be coordinated in performing different tasks.

Suppose, for instance, that there are two receivers and one

sender. The sender observes one of four equiprobable states of the

world and sends one of two signals to each receiver. The receivers

must each choose between two acts, and the acts must be coordi-

nated in a way determined by the state for all to get a payoff. We

take payoffs for combinations of receivers’ acts to be:

We assume that the sender can distinguish members of the team, so

sender’s strategy maps states into ordered pairs of signals and a

receiver’s strategy maps her signal into her space of acts. Here the

problem to be solved is a combination of one of communication

and one of coordination. It is solved in a signaling system equilibri-

um, in which everyone always gets a payoff of one. A signaling-

system equilibrium is again a strict equilibrium, and the unique

strict equilibrium in the game. It is a strongly stable attractor in the

replicator dynamics.

In the foregoing example, the two receivers can be thought of as

playing a rather trivial two-person game, but the game is different

in every state of the world. In state 1 the receivers are playing the

game:

<Act1, Act1> <Act1, Act2> <Act2, Act1> <Act2, Act2>

State 1 1,1,1 0,0,0 0,0,0 0,0,0

State 2 0,0,0 1,1,1 0,0,0 0,0,0

State 3 0,0,0 0,0,0 1,1,1 0,0,0

State 4 0,0,0 0,0,0 0,0,0 1,1,1
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They only get paid if they both do act 1.

In state 2:

In this state they only get paid if they coordinate on the first

receiver doing act 1 and the second doing act 2. Likewise for the

other two states. In a signaling system, the sender tells the receivers what

the game is and the sender gets paid for that information.

Team leader II (correlated equilibrium)

The example can be varied in many ways by changing the embed-

ded two-person games and their effect on the payoffs to the sender.

At the other end of the spectrum, we can suppose that the embed-

ded games are all the same. But now we choose a less trivial

embedded game, one with multiple equilibria. Consider the

Hawk-Dove game a standard model of resource competition.11

The game goes by many aliases. In other quarters it is known as

“Chicken” or as “Snowdrift game.” With the different names go

different stories. The story for “Chicken” is that two teenagers

drive towards each other at high speed, and the first to swerve

loses face and is called a “chicken.” This usage has migrated from

Act1 Act2

Act1 0,0 1,1

Act2 0,0 0,0

Act1 Act2

Act1 1,1 0,0

Act2 0,0 0,0

11 From Maynard Smith and Price 1973.
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“Rebel without a Cause” to international relations. The “Snow-

drift” story has quite a different flavor.12 Two drivers approach a

snowdrift blocking a road. Doves shovel and Hawks just stand and

wait. In the “Hawk-Dove” story of evolutionary game theory, two

individuals contest a resource. Hawk beats Dove for the resource

but when two Hawks fight there is serious injury or death. If you

meet a Hawk it is best to be a Dove; if you meet a Dove it is best to

be a Hawk.

Different stories may be appropriate to different versions of the

basic kind of payoff matrix. Here are payoffs for one kind of Hawk-

Dove game:

There are two pure equilibria in this game: player 1 plays Hawk and

player 2 Dove and the converse arrangement. But there is also a

serious possibility of mis-coordination. If each player aims for his

preferred equilibrium, they both play Hawk—each hoping to

intimidate the other—and end up fighting.13

Conflict could be avoided if a third party could, in an acceptable

way, tell them on each occasion who is to play Hawk and who is to

play Dove. We add an appropriate sender. The sender observes one

of three equiprobable states of the world. Each receiver plays Hawk

upon receipt of signal 1 and reacts to signal 2 by playing Dove. In

state 1 the sender directs signal 1 to row and signal 2 to column, in

state 2 she reverses the signals, and in state 3 they both get signal 2.

Row and column now end up playing <Hawk, Dove>, <Dove,

12 Sugden 2005.
13 They would be better off both playing Dove, but this would fall apart. If one player pays

Dove, the other is better off playing Hawk.

Hawk Dove

Hawk 0,0 7,2.

Dove 2,7 6,6

158 SIGNALS: EVOLUTION, LEARNING, AND INFORMATION



Hawk>, and <Dove, Dove>, each ⅓ of the time. They both now

have an average payoff of 5.

Is it too convenient to assume that the sender has three

equiprobable states to observe? No, the sender can easily create

them by rolling a die. Why should the sender do this? The two

receivers can each pay the sender a commission—say 5% of their

payoffs—for performing this service. It is now in the sender’s

interest to promote the total payoff of the receivers, and in the

receivers’ interests to employ the sender.

The third party is assisting the players in implementing a correlated

equilibrium of the embedded game—a fundamental solution con-

cept of game theory introduced and analyzed by Robert Aumann.14

In this example (due to Aumann), the receivers even do better than

if they had somehow learned to alternate between the two pure

equilibria <Hawk, Dove> and <Dove, Hawk>. And they do

much better than if they were just blundering around, getting

into fights. This game invites all sorts of interesting variations.

I am sure that you have already thought of some.

How difficult is it for players to learn to correlate in our model

situation? They face more challenges than individuals did in the

simple situations with which we began the book. We no longer

have pure common interest, but rather a complicated web of

competing interests. Each of the receivers does best when he is

the Hawk while the other is the Dove. The sender would do best if

she could get the receivers to both always be Doves, but each

would have an incentive to deviate from this arrangement.

Leader-follower

Our two leader-follower examples are bookends for a shelf of

models. In the first model the problem is one of coordination.

The leader identifies the operative game and sends that information

14 Aumann 1974, 1987.
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to the receivers. The receivers then naturally do the best thing. The

sender tells the receivers what the game is. In the second example the

problem is one of partial conflict. The game is fixed, but knowledge

of the game does not give unambiguous guidance. The team leader

tells receivers what to do. In real teams, both considerations may

come into play. An effective team leader may transmit some, but

not all, of the information at her disposal. She may seek additional

information as required, combining dialogue with direction.
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Learning to Network

We now suppose that, in one of the ways investigated in preced-

ing chapters, individuals have learned to signal. Building on this

basis, how can they learn to combine these signaling interactions

to form signaling networks? This is the next question for a

naturalistic theory of signaling. It is too large a question for a

single chapter, or even a single book. Here I will give an intro-

duction to this growing area of research. I hope that you will find

the simple examples treated here interesting and suggestive.

The spirit of the enterprise is intended to be consonant with the

rest of this book: start with the simplest and most naive forms of

trial-and-error learning and see what they can do. If they fail to

solve a problem, climb up the ladder of cognitive sophistication to

see what it takes. We start in a somewhat roundabout way by

noting the importance of ring structures of symbolic exchange in

primitive societies.

Rings in primitive societies

In 1920, Bronislaw Malinowski published an article entitled

“Kula” in Man, the journal of the Royal Anthropological

Society. In it, he described the Kula Ring, later made famous





by his book Argonauts of the Western Pacific.1 The ring, in Mal-

inowski’s words:

is based primarily upon the circulation of two articles of high value, but

of no real use,—these are armshells made of the Conus milleounctatus, and

necklets of red shell-discs, both intended for ornaments, but hardly ever

used, even for this purpose. These two articles travel, in a manner to be

described later in detail, on a circular route which covers many miles

and extends over many islands. On this circuit, the necklaces travel in

the direction of the clock hands and the armshells in the opposite

direction. Both articles never stop for any length of time in the hands

of any owner; they constantly move, constantly meeting and being

exchanged.2

The necklaces and armshells have social, symbolic, and even

magical value. They become more valuable as they circulate.

Each subsequent owner adds to the history, power and value of

an item.

Computer LAN rings

Before computer networking power was almost free, computers

were sometimes organized in local area networks (LAN) with the

structure of a ring. Each node passes information to an immediate

neighbor in a specified direction—say clockwise—along the ring.

Information then flows to all nodes around the ring. One disad-

vantage of a ring network is that it is not robust. If one node is

disabled, information flow is disrupted. As insurance, sometimes

ring networks also add counter-rotation, passing information to

neighboring nodes in both clockwise and counter-clockwise direc-

tions, just like the Kula ring.

1 Malinowski 1922.
2 Malinowski 1920.
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Some of the resemblance is misleading. Rotation combined with

counter-rotation in the Kula has more to do with reciprocity than

with robustness. But some resemblances may be significant. In

particular, note that the good being passed on does not degrade as

it passes along. The information is passed along reliably without

appreciable decay in the computer LAN. The articles in the Kula

ring also have a value that does not decay. It actually increases as

they are passed along. This will prove to be an important consider-

ation in game theoretic analysis of network formation.

The Bala–Goyal ring game

Venkatesh Bala and Sanjeev Goyal3 introduce an informational

network game in which a ring structure4 has a special equilibrium

status. Individuals get private information by observing the world.

Each gets a different piece of information. Information is valuable.

An individual can pay to connect to another and get her informa-

tion. The individual who pays does not give any information; it

only goes from payee to payer. The payer gets not only the

information from private observations of those whom she pays,

but also that which they have gotten from subscribing to others for

their information. Information flows freely in this community, and

without degradation, along the links so established. It flows in one

direction, from payee to payer. We assume that information flow is

fast, relative to any adjustment of the network structure.

If the cost of subscribing to someone’s information is too high,

then it won’t pay for anyone to do it. But let’s suppose that the cost

of establishing a connection is less than the value of each piece of

information. Then connections certainly make sense. We assume

that any individual can make as many connections as she wishes.

This model can be viewed as a game, with an individual’s strategy

3 Bala and Goyal 2000.
4 They call it a “wheel.”
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being a decision of what connections to make. It could be none, all,

or some. The game has multiple equilibria, but one is special. This

is the ring (or circle). There is an example in figure 14.1.

The ring structure in this game is special in two ways. The first is

that it is strict, the second that it is efficient. It is a strict equilibrium in

that someone who unilaterally deviates from such a structure finds

herself worse off. It is Pareto efficient in that there is no way to

change it to make someone better off without making someone

worse off. It is efficient in an even stronger sense. There is simply

no way at all to make anyone better off. Everyone has the highest

possible payoff that they could get in any network structure. The

key to both these properties is that information flows freely

around the ring, so that for the price of one connection a player

gets all the information that there is.

Consider a player in such a ring who changes her strategy. She

could establish additional links, in which case she pays more and

1

2

34

5

6

Figure 14.1: An information ring.
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gets no more information. She could break her link, in which case

she would forego the cost but get no information. She could break

the link and establish one or more new ones, but every way to do

that would deliver less than total information. Every deviation

leaves her worst off. That is to say that the ring is a strict Nash

equilibrium of the game.

Now let us ask a different question. Suppose that, starting from

the ring, there is some lucky guy that everyone else would like to

make better off, even if they have to sacrifice something to do it.

There is nothing they can do! He is already getting all the informa-

tion at the cost of one link. They cannot alter their links so as to

give him more information, since he is already getting it all. Only

he can avoid the cost of the link by breaking it—that is, not visiting

anyone—but then he gets no information at all. The ring is strongly

efficient.

Given these rather strong optimality properties of the ring, it is of

interest to see if individuals playing this game can learn to form a

signaling network with the structure of the ring. Experimental

evidence is that in small group interactions with this game struc-

ture, individuals do spontaneously learn to form rings.5 Do we have

a plausible model of network dynamics that can account for this?6

A dynamic model of network formation

Robin Pemantle and I advanced a low rationality, trial-and-error

model of network formation in 2000. The idea was the individuals

start out by interacting at random and then learn with whom to

interact by the kind of reinforcement learning with which we are

familiar. Here is a simple model of the process. Each individual

starts out with an urn with one ball of one color for each possible

5 Callander and Plott 2005.
6 The interested reader should consult modeling specifically directed at the Kula ring by

Rolf Ziegler, which takes a somewhat different approach. See Ziegler 2007, 2008.
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choice. Each day each individual chooses a ball from his urn, visits

the indicated individual and has an interaction. Visits are always

received. Visitor and visitee take numbers of balls of the partner’s

color proportional to the payoff received and add them to their

respective urns. This is just learning whom to visit by the kind of

reinforcement learning we have already studied in connection with

learning to signal.

The Bala–Goyal game fits within this framework. We substitute

altering connections for visiting, assume that information transfer is

fast between changes in connections, and keep the reinforcement

learning. Then we can justify the payoff function used by Bala and

Goyal, and the equilibrium analysis is unchanged. However, net-

work formation by reinforcement does not learn the ring. Rather

extensive simulations show individuals maintaining probabilistic

links with a variety of contacts. The structure is different each

time. We just don’t see the ring crystallizing out.7

There is no reason at all to believe that reinforcement learning

should lead to an optimal solution to every problem.This is a situation

where a little more sophistication in learning might be useful.

Simple inductive learning8

Suppose we move up to simple inductive learning. Individuals

observe others’ acts, form predictive probabilities by taking the

average of their acts in the past, and choose a best response to

those acts. If there are ties for best response, the players flip a

coin. Instead of keeping track of rewards, individuals see how

others’ acts affect their payoffs, attempt to predict those acts in a

simple way, and choose strategically. Now individuals often learn

7 One might think of trying alternative forms of reinforcement learning, but—if any-

thing—they tend to do worse.

8 See Huttegger and Skyrms 2008.
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the ring, but not always. It is still possible (but not likely) to get

stuck in a sub-optimal state.

Slight modifications to this process, however, lead to uniform

success. If players treat approximate ties as ties—for instance by

computing expected payoff just to two decimal places—they always

learn the ring network. The little bit of noise generated by approxi-

mate ties gets them out of the sub-optimal states. Here a little

decrease in rationality helps. Canwe reduce itmore and still succeed?

Best response with inertia

Suppose we decrease our agent’s sophistication a little more. Let’s

get rid of the inductive logic and just keep the best response. Most

of the time players just keep on doing what they did last time, but

once in a while someone wakes up and chooses a best response to

what others did last time. She remembers the whole network

structure as it was, assumes that no one else will change, and alters

her network connections in the optimal way given that assumption.

This is called best response with inertia. Bala and Goyal prove that this

dynamics always learns the ring.

Low information—low rationality

The level of rationality has been lowered to rather modest levels.

But our players still have to know some things in order to best-

respond. They need to know the structure of the game: that is, how

the actions of others affect their payoffs. And they need to know the

existing network structure—what everyone did last time. There are

circumstances in which these requirements are not plausible. Con-

sider Malinowski’s own observation about the Kula:

Yet it must be remembered that what appears to us an extensive, compli-

cated, and yet well ordered institution is the outcome of so many doings

and pursuits, carried on by savages, who have no laws or aims or charters

definitively laid down. They have no knowledge of the total outline of any
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of their social structure. They know their own motives, know the purpose

of individual actions and the rules which apply to them, but how, out of

these, the whole collective institution shapes, this is beyond their mental

range. Not even the most intelligent native has any clear idea of the Kula

as a big, organized social construction . . . 9

So we are led to ask whether there is a plausible low-information,

low-rationality learning that succeeds here where reinforcement

learning fails.

Probe and adjust

Suppose our individuals don’t know the payoff structure of the

game, and don’t know what others have done. They only know

what actions are open to them, what they have done, and what

payoffs they got. We are almost back where we started. Again we

suppose that individuals usually just keep doing what they are used

to, but occasionally an individual chooses to explore. These choices

are infrequent and independent, just like in the Bala–Goyal best-

response dynamics. Call them probes. When an individual probes,

she notes her payoff and compares it with what she is used to. If it is

better she sticks with the probe strategy. If it is worse, she goes back

to her old strategy. Ties are broken by a coin flip.

If probes are infrequent and independent, then it is very unlikely

that multiple individuals probe at the same time, or subsequent

times. Most individual probes occur in a context where everyone

has been doing the same thing, a single individual tries an alternative

while others stay the same, and the individual adjusts to the new

strategy while others remain the same if it gives an increased payoff.

If probes are very infrequent, then almost all probes will have this

character. We can analyze a simplified process where they all do.

In the simplified process, nothing happens unless there is a probe.

We can then focus on the states before and after a probe, with the

9 Malinowski 1922.
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transition probabilities being governed by the probabilities of

probes (uniform) and their results. This gives us an embedded

Markov chain. The rings are absorbing states, and the only ones.

From any other state we can get to a ring with positive probabili-

ty.10 It follows that the embedded Markov process always learns the

ring. That means that the original probe and adjust learning, learns

the ring and stays close to it except for little fluctuations caused by

ongoing probes. We have shown that it is possible for decentralized

agents without global knowledge or strategic sophistication to learn

the ring structure.11

Breakdown of the ring

Many primitive societies have ring exchanges of one sort or anoth-

er. Susan McKinnon finds “male” and “female” gifts flowing in

opposite directions in a ring structure in the Tanimbar islands.12

Ceremonial exchange cycles are often accompanied with real eco-

nomic exchange—with trade. They often interact with kinship.

Exchange rings have been studied among aboriginals in Australia

and Bantu in Africa. Some take place on land, so one cannot simply

assume that the ring follows from the geography of a set of islands.

But ring structures are not to be found in every society. As

societies become more complex, rings give way to other topolo-

gies. Claude Lévi-Strauss and others associate rings with egalitarian

exchange, and the breakdown of the ring with the development of

inegalitarian arrangements. Whether this generalization holds good

or not, it is of interest to see why rings may not persist. In order to

understand the breakdown of the ring, we might begin by

10 This follows from the analysis given by Bala and Goyal for best response dynamics.

[Theorem 3.1].
11 This “Probe and Adjust” dynamics is similar to, but not identical with, the dynamics

studied by Marden et al. 2009. For more on low rationality, payoff-based dynamics see

Young 2009.
12 McKinnon 1991.
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investigating what happens when the assumptions behind the Bala–

Goyal ring model are relaxed.

Relaxing assumptions

Information may decay (e.g. be corrupted by noise) as it passes form

one node to another. This would be increasingly important when

the ring grows large enough so that information passing through

many links becomes highly degraded. Information flow may be

two-way, rather than one-way. If so, costs of connection might be

shared in various ways—perhaps with individuals bargaining over

how the costs are shared. The items of information originating with

different individuals might not be independent, or may not be

equally valuable. Each of these variations, taken either separately

or in combination, can make a difference. They are being actively

explored in a growing literature.13

To get a little feeling for these factors, suppose we have a ring as

in the Bala–Goyal game, and information flows without decay in

two directions. Then any member of the ring would be happy to

drop her connection, saving the connection cost and still getting all

the information. The resultant topology is a line:

�!�!�!�!�!�

The individual at the foot of the line now free-rides on the others.

He is not cut off because his information is worth more than the

cost his neighbor pays to connect to him.

This arrangement is an equilibrium, in that no one can now do

better by changing. But there are changes in which others do no

worse. For instance, the individual at the head of the line might just

as well break his connection and connect to someone else. He still

pays the cost of one connection and gets all of the information.

13 Bloch and Jackson 2007; Galeotti et al. 2006; Jackson 2008; Goyal 2007.
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This is also an equilibrium. There are now lots of possible equili-

bria, and the population could drift among them.

But now suppose that one player, the center, pays to connect to

each of the other players, and that is all. They are now in a star

topology, as shown in figure 14.2.

Since the center is paying for all connections, it is called a center-

sponsored star. Suppose that value of a unit of information is 1 and cost

of establishing a link is 0.1. Then the center gets all the information,

6.0, less the cost of maintaining 5 links, for a net payoff of 5.5. Each

of the other players free-rides on the links for a net payoff of 6.0.

You can verify that this is a strict Nash equilibrium. Any players

would be worse off by deviating. If the center broke a link he

would save 0.1 and lose 1.0. If a peripheral player made a link

he would have to pay for it, whereas he now gets all the information

without paying. If he broke a link he would simply lose information.

Bala and Goyal establish that in the case of two-way flow of

information without decay, the center sponsored star is the unique

1

2

3

4

5

6

Figure 14.2: A star network with six players.
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strict Nash equilibrium. (Providing the value of a unit of informa-

tion is greater than the cost of making a link.) They also show that

the process of best response with inertia learns this star configuration

with probability one. For a low rationality, payoff-based approach,

we find that probe and adjust dynamics here approximates the star in

the same way that it approximated the ring in the earlier model.

Laboratory experiments, however, show that human subjects

perform quite differently in the two Bala–Goyal games. In experi-

ments by Armin Falk and Michael Kosfeld14 subjects learned the

ring quite well, but never learned the center-sponsored star. Ex-

planations that have been floated focus on the difficulty of deciding

who would be in the center, and distaste for being the one player

who pays for all the connections.

Everything is changed if there is information decay. Suppose that

10% of the information is lost as it passes through a link. The value

of a bit of information is taken as 1 and the cost of connection as .1.

2

1

3

4

5

6

Figure 14.3: A star network with six players.

14 Falk and Kosfeld 2003.
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Now consider a periphery-sponsored star, where five players on the

periphery pay to connect to the one in the center.

The lucky center pays no costs and is one link away from

everyone else, for a payoff of 5.5. The players on the periphery,

after cost, have a payoff of 5.04. This is a strict equilibrium. It isn’t

worth it for players on the periphery to pay .1 for a direct

connection to one another to replace second-hand information

that passed through the center (value .81) with first-hand infor-

mation (value .9). They certainly don’t want to break the con-

nection to the center, who provides lots of second-hand

information. His centrality is an asset. But note that with these

values for cost of link formation and information decay, the

center-sponsored star that we considered earlier is also a strict

Nash equilibrium. If we raise the cost of connection up to 1.1, the

center-sponsored star is not viable. The center would have to pay

more for each connection than it is worth. But the periphery-

sponsored star is viable if the players can get to it. Each peripheral

player pays 1.1, which is well worth it given all the information

she gets from the center.

Daniel Hojman and Adam Szeidl15 have taken information decay

further. They have constructed a class of models in which the

periphery-sponsored star plays a special role. There is two-way flow

of information, with strong decay in the value of information

received, and with some “cut-off ” distance such that information

flowing from more distant sources is worthless. In the basic model,

the initiator of a link bears its full costs, and all individuals are the

same, although modifications of these assumptions are also explored.

In one realization of the basic model, each individual observes

the state of the world with some error, errors being independent

across individuals and error probabilities being the same for each

individual. Increasing information exhibits decreasing returns—

when you know with high probability the state, further confirma-

tion is not worth so much. When observations are communicated

15 Hojman and Szeidl 2008.
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from one to another, further errors are introduced. For this basic

model, Hojman and Szeidl prove that the unique Nash equilibrium

of the network formation game is a periphery-sponsored star.

There are laboratory experiments on a game related to Hojman

and Szeidel’s model, but not quite the same. Seigfreid Berninghaus,

Karl-Martin Ehrhart, Marion Ott, and Bodo Vogt.16 consider a

game where you get all your connection’s information and if you

paid for the link, you get all his connection’s information as well,

and that’s all. There is no information decay per se, but the sharp

cutoffs put a similar premium on short path length. Where the strict

Nash equilibrium is a periphery-sponsored star, they find experi-

mental subjects learning this star structure. However, when in such

a star subjects sometimes fluctuate out and end up back in a star

with a different individual as center.

It is remarkable how we now see breakdown of the ring and

evolution of hierarchy, even though the population is perfectly

homogeneous. Real populations are not homogeneous, of course,

and some individuals have more valuable information than others.

This may be because they are deeper thinkers, or better situated

observers, or some combination of such factors. Hojman and Szeidl

consider the effect of modifying their basic model to take account

of such heterogeneity.

The equilibrium result is a population structure of interlinked

stars, where the central figure of one star establishes a link to the

central figure of another, either directly or through an intermedi-

ary. If there is a little noise operating, the central figures are the ones

with the high-value information.

Conclusion

What are we to make of the parallels between dynamics of

information networks and the networks of symbolic exchange

16 Berninghaus et al. 2007.
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discussed by anthropologists? I don’t know the answer, but

the question merits examination. The transition from rings to

stars, linked stars, and more complicated structures is clearly of

fundamental importance. The models discussed here already tell

us very interesting things, but there is clearly a lot more to

learn.

In this chapter, we introduced a low-rationality probe and adjust

dynamics to approximate higher rationality learning in the basic

Bala–Goyal models. Both best response dynamics and probe and

adjust learned networks that reinforcement learning did not. Most

of the dynamic models of network formation in the literature are

either based on simple reinforcement learning,17 or on some kind

of best-response dynamics. The kind of best response with inertia

used by Bala and Goyal is also used by other game theorists.18 We

would therefore like to know how far our results generalize.

It should be evident that, in general, probe and adjust learns a

network structure if best response with inertia does. In the literature on

best response with inertia, it is always assumed that responses are rare

enough that we can assume that players don’t respond simulta-

neously. This simpler idealized process is analyzed, just as we did

with probe and adjust. If there is a best response move, then with

positive probability probe and adjust will make it. Then suppose that,

for every state, there is a positive probability best response path to

an absorbing network state. It follows that, for every state, there is

also a positive probability probe and adjust path to that state. If high

rationality best response learns the network, the low rationality

probe and adjust does so as well.19

17 Skyrms and Pemantle 2000; Liggett and Rolles 2004; Pemantle and Skyrms 2004a,
2004b.
18 For instance, Watts 2001; Jackson and Watts 2002, apply this to network formation.

19 There are network games in which these dynamics do not learn the optimal network,

such as the case of the Bala–Goyal peripheral sponsored star with high cost of connection

discussed above. Starting without connections, any connection costs more than it is worth. It

is only when the structure is in place that it pays everyone to maintain it.
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Postscript

There is no mystery behind the emergence of signaling. Given

favorable circumstances, adaptive processes can lead to spontaneous

emergence of signaling systems. This is true for simple models of

evolutionary dynamics based on random mutation and differential

reproduction. It is just as true for various forms of trial-and-error

learning. No special-purpose mental equipment is required. Spon-

taneous emergence of signaling is perfectly natural, and is to be

expected when there is an advantage to be gained by transferr-

ing some information. Perfectly aligned interests between senders

and receivers are by no means required, and deception is a real

possibility.

There is no mystery about the meaning of signals. The object of

primary interest is information. Signals naturally acquire information

of a variety of types, and they can carry information both in and out

of equilibrium. The Platonist’s propositional notion of meaning is

an abstraction from one kind of information in perfect equilibrium

in an idealized signaling game.

Information flows throughout signaling networks. But there is a

lot more going on than the simple transmission of information.

Information is filtered, combined, and processed. Signaling net-

works perform computations and make inferences. Signals effect

coordinated behavior between multiple actors—often for mutual

benefit. The details of how this works in even the simplest natural

signaling networks are amazingly complex.

But amid the rich scientific landscape, some recurrent patterns

have emerged. These network motifs have been discovered empir-

ically in a wide variety of biological networks. They are small



network modules from which larger networks are constructed.1

Ubiquitous motifs include filters, switches, feedback loops of vari-

ous kinds, and structures that implement simple inference. Under-

standing how these evolved, and how nature puts them together, is

a challenge for naturalistic philosophy.

1 See Milo et al. 2002; Wolf and Arkin 2003; Alon 2006, 2007.
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Lévi-Strauss, C. (1969) The Elementary Structures of Kinship. Boston: Bea-

con Press.

Lewis, D. K. (1969) Convention. Cambridge, MA: Harvard University

Press.

Liggett, T. M. and S. Rolles (2004) “An Infinite Stochastic Model of

Social Network Formation.” Stochastic Processes and their Applications

113: 65–80.

Lindley, D. (1956) “On a Measure of the Information Provided by an

Experiment.” The Annals of Mathematical Statistics 27: 986–1005.

Lloyd, J. E. (1965) “Aggressive Mimicry in Photuris: Firefly Femmes

Fatales.” Science 149: 653–654.

Lloyd, J. E. (1975) “Aggressive Mimicry in Fireflies: Signal Repertoires of

Femmes Fatales.” Science 187: 452–453.

Luce, R. D. (1959) Individual Choice Behavior. John Wiley & Sons: New

York.

Macedonia, J. M. (1990) “What is Communicated in the Antipredator

Calls of Lemurs: Evidence from Antipredator Call Playbacks to Ring-

tailed and Ruffed Lemurs.” Ethology 86: 177–190.

McKinnon, S. (1991) From a Shattered Sun. Madison: University of Wis-

consin Press.

Macy, M. (1991) “Learning to Cooperate: Stochastic and Tacit Collusion

in Financial Exchange.” American Journal of Sociology 97: 808–843.

Macy, M. and A. Flache (2002) “Learning Dynamics in Social Dilem-

mas.” Proceedings of the National Academy of Sciences of the USA 99: 7229–

7236.

Malinowski, B. (1920) “Kula: The Circulating Exchange of Valuables in

the Archipelagoes of Eastern New Guinea.” MAN 20: 97–105.

Malinowski, B. (1922) Argonauts of the Western Pacific. New York: Dutton.

Manser, M., R. M. Seyfarth, and D. Cheney (2002) “Suricate Alarm Calls

Signal Predator Class and Urgency.” Trends in Cognitive Science 6: 55–57.

Marden, J. P., H. P. Young, G. Arslan, and J. S. Shamma (2009) “Payoff-

based dynamics for Multiplayer Weakly Acyclic Games.” SIAM Journal

on Control and Optimization 48: 373–396.

188 SIGNALS: EVOLUTION, LEARNING, AND INFORMATION



Marler, P. (1999) “On Innateness: Are Sparrow Songs ‘Learned’ or

‘Innate.’” In The Design of Animal Communication, ed. Marc Hauser

and Mark Konishi. Cambridge, MA: MIT Press.

Maynard Smith, J. and G. R. Price (1973) “The Logic of Animal Con-

flict.” Nature 246: 15–18.

Maynard Smith, J. and G. A. Parker (1976) “The Logic of Asymmetric

Contests.” Animal Behaviour 24: 159–175.

Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge:

Cambridge University Press.

Maynard Smith, J. (2000) “The Concept of Information in Biology.”

Philosophy of Science 67: 177–194.

Maynard Smith, J. and D. Harper (2003) Animal Signals. Oxford: Oxford

University Press.

Mayor, J. (1898) “King James I On the Reasoning Faculty in Dogs.” The

Classical Review 12: 93–96.

McGregor, P. (2005) Animal Communication Networks. Cambridge Uni-

versity Press: Cambridge.

Merin, A. (1999) “Information, Relevance, and Social Decisionmaking:

Some Principles and Results of Decision-Theoretic Semantics.” In

L. Moss, J. Ginzburg, M. de Rijke (eds.), 179–221, Logic, Language,

and Computation, vol. 2. Stanford: CSLI.

Miller, M. B. and B. Bassler (2001) “Quorum Sensing In Bacteria.”

Annual Review of Microbiology 55: 165–199.

Millikan, R. G. (1984) Language, Thought and Other Biological Categories.

Cambridge, MA: MIT Press.

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon (2002) “Network Motifs: Simple Building Blocks of Complex

Networks.” Science 298: 824–827.

Nowak, M. A. and D. Krakauer (1999) “The Evolution of Language.”

Proceedings of the National Academy of Sciences of the USA 96: 8028–8033.

Nowak, M., J. Plotkin, and D. Krakauer (1999) “The Evolutionary

Language Game.” Journal of Theoretical Biology 200: 147–162.

Nowak, M. and K. Sigmund (1993) “A Strategy of Win-stay, Lose-shift

that Outperforms Tit-for-tat in the Prisoner’s Dilemma Game.” Nature

364: 56–58.

Oliphant, M. (1994) “The Dilemma of Saussurean Communication.”

Biosystems 37: 31–38.

REFERENCES 189



Othmer, H. G. and A. Stevens (1997) “Aggregation, Blow Up and

Collapse: The ABC’s of Taxis in Reinforced Random Walks.” SIAM

Journal on Applied Mathematics 57: 1044–1081.

Papineau, D. (1984) “Representation and Explanation.” Philosophy of

Science 51: 550–72.

Papineau, D. (1987) Reality and Representation. Oxford: Blackwell.

Parikh, P. (2001) The Use of Language. Stanford: CSLI.

Pawlowitsch, C. (2008) “Why Evolution Does Not Always Lead to an

Optimal Signaling System.” Games and Economic Behavior 63: 203–226.

Pemantle, R. (1990) “Nonconvergence to Unstable Points in UrnModels

and Stochastic Approximations.” Annals of Probability 18: 698–712.

Pemantle, R. (2007) “A Survey of Random Processes with Reinforce-

ment.” Probability Surveys 4: 1–79.

Pemantle, R. and B. Skyrms (2004a) “Network Formation by Reinforce-

ment Learning: The Long and the Medium Run.” Mathematical Social

Sciences 48: 315–327.

Pemantle, R. and B. Skyrms (2004b) “Time to Absorption in Discounted

Reinforcement Models” Stochastic Processes and Their Applications 109:

1–12.

Pinker, S., and R. Jackendoff (2005) “The Faculty of Language: What’s

Special About It?” Cognition 95: 201–236.

Pitman, J. (1995) “Exchangeable and Partially Exchangeable Random

Partitions.” Probability Theory and Related Fields 102: 145–158.

Proclus. (2007) On Plato Cratylus. Trans. Brian Duvick. London: Duck-

worth.

Quine, W. V. O. (1936) “Truth by Convention.” In Philosophical Essays

for A. N. Whitehead, ed. O. H. Lee. 90–124.

Quine, W. V. O. (1969) “Epistemology Naturalized.” In Ontological

Relativity and Other Essays. New York: Columbia University Press.

Rainey, H. J., K. Zuberbühler, and P. J. B. Slater (2004) “Hornbills Can

Distinguish between Primate Alarm Calls.” Proceedings of the Royal

Society of London B 271: 755–759.

J. Riley, R. U. Greggers, A. D. Smith, D. R. Reynolds, and R. Menzel

(2005) “The Flight Paths of Honeybees Recruited by the Waggle

Dance.” Nature 435: 205–207.

Robbins, H. (1952) “Some Aspects of the Sequential Design of Experi-

ments.” Bulletin of the American Mathematical Society 58: 527–535.

190 SIGNALS: EVOLUTION, LEARNING, AND INFORMATION



van Rooy, Robert. (2003) “Questioning to Resolve Decision Problems.”

Linguistics and Philosophy 26:727–763.

Roth, A. and I. Erev (1995) “Learning in Extensive Form Games: Exper-

imental Data and Simple Dynamical Models in the Intermediate

Term.” Games and Economic Behavior 8: 164–212.

Russell, B. (1921) The Analysis of Mind. (Lecture X) London: George

Allen and Unwin.

Russell, B. (1948) Human Knowledge, Its Scope and Limits. New York:

Simon and Schuster.

Salmon, T. C. (2001) “An Evaluation of Econometric Models of Adaptive

Learning.” Econometrica 1597–1628.

Savage-Rumbaugh, S., K. McDonald, R. A. Sevkic, W. D., Hopkins,

and E. Rupert (1986) “Spontaneous Symbol Acquisition and Commu-

nicative Use by Pygmy-Chimpanzees (Pan Paniscus)” Journal of Experi-

mental Psychology: General 114: 211–235.

Savage-Rumbaugh, S. and R. Lewin (1994) Kanzi: An Ape at the Brink of

the Human Mind. New York: Wiley.

Schauder, S. and B. Bassler (2001) “The Languages of Bacteria.”Genes and

Development 15: 1468–1480.

Schlag, K. (1998) “Why Imitate and If So, How? A Bounded

Rational Approach to Many Armed Bandits.” Journal of Economic Theory

78, 130–156.

Schreiber, Sebastian J. (2001) “Urn Models, Replicator Processes, and

Random Genetic Drift”, SIAM Journal on Applied Mathematics, 61.6:

2148–2167.

Schultz, W. (2004) “Neural Coding of Basic Reward Terms of Animal

Learning Theory, Game Theory, Microeconomics and Behavioural

Ecology.” Current Opinion in Neurobiology 14:139–147.

Searcy, W. A. and S. Nowicki (2005) The Evolution of Animal Communica-

tion: Reliability and Deception in Signaling Systems. Princeton: Princeton

University Press.

Sedley, D. (1998) Lucretius and the Transformation of Greek Wisdom.

Cambridge: Cambridge University Press.

Sedley, D. (2003a) Plato’s Cratylus. Cambridge: Cambridge University

Press.

Sedley, D. (2003b) “Lucretius and the New Empedocles.” Leeds International

Classical Studies 2.4: 1–12.

REFERENCES 191



Selten, R. and W. Massimo (2007) “The Emergence of Simple Languages

in an Experimental Coordination Game.” Proceedings of the National

Academy of Sciences of the USA 104: 7361–7366.

Seyfarth, R. M. and D. L. Cheney (1990) “The Assessment by Vervet

Monkeys of Their Own and Other Species’ Alarm Calls.” Animal

Behavior 40: 754–764.

Shannon, C. (1948) “A Mathematical Theory of Communication.” The

Bell System Mathematical Journal 27: 379–423, 623–656.

Shannon, C. and W. Weaver (1949) The Mathematical Theory of Communi-

cation. Urbana: University of Illinois Press.

Shreiber, S. (2001) “Urn Models, Replicator Processes and Random

Genetic Drift.” SIAM Journal on Applied Mathematics 61: 2148–2167.

Sinervo, B. and C. M. Lively (1996) “The Rock-Paper-Scissors

Game and the Evolution of Alternative Male Strategies.” Nature 380:

240–243.

Skyrms, B. (1996) Evolution of the Social Contract. Cambridge: Cambridge

University Press.

Skyrms, B. (1998) “Salience and Symmetry-Breaking in the Evolution of

Convention.” Law and Philosophy 17: 411–418.

Skyrms, B. (1999) “Stability and Explanatory Significance of Some Simple

Evolutionary Models.” Philosophy of Science 67: 94–113.

Skyrms, B. (2000) “Evolution of Inference.” In Dynamics of Human and

Primate Societies, ed. Tim Kohler and George Gumerman, 77–88. New

York: Oxford University Press.

Skyrms, B. (2004) The Stag Hunt and the Evolution of Social Structure.

Cambridge: Cambridge University Press.

Skyrms, B. (2005) “Dynamics of Conformist Bias.” Monist 88: 260–269.

Skyrms, B. (2007) “Dynamic Networks and the Stag Hunt: Some Ro-

bustness Considerations.” Biological Theory 2: 7–9.

Skyrms, B. (2009) “Evolution of Signaling Systems with Multiple Senders

and Receivers.” Philosophical Transactions of the Royal Society B

doi:10.1098/rstb.2008.0258, 364: 771–779.

Skyrms, B. (2009) “Presidential Address: Signals.” Philosophy of Science

75:489–500.

Skyrms, B. and R. Pemantle (2000) “A Dynamic Model of Social Net-

work Formation.” Proceedings of the National Academy of Sciences of the

USA. 97: 9340–9346

192 SIGNALS: EVOLUTION, LEARNING, AND INFORMATION



Skyrms, B. and S. L. Zabell (forthcoming) “Inventing New Signals.”

Slobodchikoff, C. N., J. Kiriazis, C. Fischer, and E. Creef (1991) “Se-

mantic Information Distinguishing Individual Predators in the Alarm

Calls of Gunnison’s Prairie Dogs.” Animal Behaviour 42: 713–719.

Smith, A. (1983) [1761] Considerations Concerning the First Formation

of Languages. Reprinted in Lectures on Rhetoric and Belles Lettres, ed.

J. C. Bryce. Oxford: Oxford University Press.

Snowdon, C. T. (1990) “Language Capacities of Nonhuman Animals.”

Yearbook of Physical Anthropology 33: 215–243.

Sorabji, R. (1993) Animal Minds and Human Morals: The Origins of the

Western Debate. Ithaca: Cornell University Press.

Stander, P. E. (1990s) “Cooperative Hunting in Lions: The Role of the

Individual.” Behavioral Ecology and Sociobiology 29: 445–454.

Stanford, P. K. (2007) Exceeding Our Grasp. Oxford: Oxford University

Press.

Steels, L. (1997) “The Synthetic Modeling of Language Origins.” Evolu-

tion of Communication 1: 1–35.

Steels, L. (1998) “The Origins of Syntax in Visually Grounded Robotic

Agents.” Artificial Intelligence 103: 133–156.

Sterelny, K. (2000) “The ‘Genetic Program’ Program: A Commentary on

Maynard-Smith on Information in Biology.” Philosophy of Science 67:

195–201.

Sterelny, K. (2003) Thought in a Hostile World: The Evolution of Human

Cognition. Oxford: Blackwell.

Struhsaker, T. T. (1967) “Auditory Communication among Vervet

MonkeysCercopithecus aethiops.” In Social Communication among Primates,

ed. S.A. Altmann, 281–324. Chicago: University of Chicago Press.

Sugden, R. (2005) The Economics of Rights, Co-operation and Welfare (Ba-

singstoke: Macmillan).

Suppes, P. and R. Atkinson (1960) Markov Learning Models for Multiperson

Interactions. Palo Alto, CA: Stanford University Press.

Taga, M. E. and B. L. Bassler (2003) “Chemical Communication Among

Bacteria.” Proceedings of the National Academy of Sciences of the USA 100

Suppl. 2, 14549–14554.

Taylor, P. and L. Jonker (1978) “Evolutionarily Stable Strategies and

Game Dynamics.” Mathematical Biosciences 40, 145–156.

REFERENCES 193



Tempelton, C., E. Greene and K. Davis (2005) “Allometry of Alarm

Calls: Black-Capped Chickadees Encode Information about Predator

Size.” Science 308: 1934–1937.

Thorndike, E. L. (1911) Animal Intelligence. New York: Macmillan.

Thorndike, E. L. (1927) “The Law of Effect.” American Journal of Psychol-

ogy 39: 212–222.

Trapa, P. and M. Nowak (2000) “Nash Equilibria for an Evolutionary

Language Game.” Journal of Mathematical Biology 41: 172–188.

Vencl, F., B. J. Blasko, and A. D. Carlson (1994) “Flash Behavior of

Female Photuris Versicolor Fireflies in Simulated Courtship and Pred-

atory Dialogues.” Journal of Insect Behavior 7: 843–858.

Verlinsky, A. (2005) “Epicurus and his Predecessors on the Origin of

Language.” In Frede and Inwood 56–100.

Vanderschraaf, P. (1998) “Knowledge, Equilibrium and Convention.”

Erkenntnis 49: 337–369.

Vitruvius (1960) The Ten Books of Architecture Bk. 2 Ch. 1. Tr. Morris

Hicky Morgan New York: Dover.

von Frisch, K. (1967) The Dance Language and Orientation of the Bees.

Cambridge, MA: Harvard University Press.

von Neumann, J. and Morgenstern, O. (1944) Theory of Games and

Economic Behavior. Princeton: Princeton University Press.

Wagner, E. (2009) “Communication and Structured Correlation.” Er-

kenntnis doi 10.1007/s10670–009–9157–y.

Wärneryd, K. (1993) “Cheap Talk, Coordination, and Evolutionary

Stability.” Games and Economic Behavior 5: 532–546.

Watts, A. (2001) “A Dynamic Model of Network Formation.”Games and

Economic Behavior 34: 331–341.

Weber, R. and C. Camerer (2003) “Cultural Conflict andMerger Failure:

An Experimental Approach.” Management Science 49: 400–415.

Wei, L. and S. Durham (1978) “The Randomized Play-the-winner

Rule in Medical Trials.” Journal of the American Statistical Association

73: 840–843.

Weibull, J. (1995) Evolutionary Game Theory. Cambridge, MA: MIT Press.

Wolf, D. M. and A. P. Arkin (2003) “Motifs, Modules and Games in

Bacteria.” Current Opinion in Microbiology 6: 125–134.

Young, H. P. (2009) “Learning by Trial and Error.” Games and Economic

Behavior 65: 626–643.

194 SIGNALS: EVOLUTION, LEARNING, AND INFORMATION



Zabell, S. L. (1992) “Predicting the Unpredictable.” Synthese 90: 205–232.

Zabell, S. L. (2005) Symmetry and Its Discontents: Essays in the History of

Inductive Probability. Cambridge: Cambridge University Press.

Zeeman, E. C. (1980) “Population Dynamics from Game Theory.” In

Global Theory of Dynamical Systems, Springer Lecture Notes on Mathe-

matics 819.

Ziegler, R. (2007) The Kula Ring of Bronislaw Malinowski: A Simulation

Model of the Co-Evolution of an Economic and Ceremonial Exchange System.

Munich: C. H. Beck Verlag.

Zeigler, R. (2008) “What Makes the Kula Go Round?” Social Networks

30: 107–126.

Zollman, K. (2005) “Talking to Neighbors: The Evolution of Regional

Meaning.” Philosophy of Science 72: 69–85.

Zuberbühler, K. (2000) “Referential Labeling in Diana Monkeys.” Ani-

mal Behavior 59: 917–927.

Zuberbühler, K. (2001) “Predator-Specific Alarm Calls in Campbell’s

Monkeys, Cercopithecus Campbelli.” Behavioral Ecology and Sociobiology

50: 414–422.

Zuberbühler, K. (2002) “A Syntactic Rule in Forest Monkey Communi-

cation.” Animal Behavior 63: 293–299.

Zuidema, W. (2003) “Optimal Communication in a Noisy and Hetero-

geneous Environment.” In Proceedings Lecture Notes on Artificial Intelli-

gence v. 2801 Berlin: Springer 553–563.

REFERENCES 195



This page intentionally left blank 



Index

alarm calls, 22–25

Alon, U., 178

Argiento, R., 14, 89, 94

Aristotle, 48

ARP learning, 100

assortment of encounters, 70–71

Atkinson, R., 84

Alexander, J. M., 134

Aumann, R., 159

Barrett, J., 96, 100, 139–140

Bassler, B., 30–31, 119–120

Batali, J., 146

Bala, V., 164–165, 167–168,

172, 176

Beggs, A., 87

belief learning, 90–92

Bergstrom, C., 106, 109–110, 113

Bergstrom, T., 53

Berninghaus, S., 175

best response for all we know with

inertia, 104–105

bi-stable switch, 152

Bloch, F., 171

bottlenecks, 112–113

Brentano, F., 43

Bush-Mosteller reinforcement,

86–87, 97–98

categories, evolution of, 109,

114–117

Cheney, D., 6, 22, 24–25, 73, 120

Chickadee semantics, 27

Chickadee syntax, 26

Chinese restaurant process,

122–124

Chomsky, N., 27

Chrysippus’ hunting dog, 143

complex signals, 146–148

Condorcet signaling system,

142–143

correlated equilibrium, 157–159

Cournot dynamics, 91, 103

Crawford, V., 7

Darwin, C., 20, 49

deception, 73–82

Democritus, 1, 19, 49, 94

dialogue, 17, 154–156

Donaldson, M., 106, 109–110, 113

Dretske, F., 33–34, 44, 47

Empedocles of Sicily, 48–49

evolutionarily stable strategy,

50–53

exponential response rule, 89–90,

99–100

Falk, A., 173

fictitious play dynamics, 91

forgetting, 89, 133–135

Galeotti, A., 171

Godfrey-Smith, P., 80



Goyal, S., 164–165, 167–168,

171, 172, 176

Grice, H. P., 1

Grim, P. 101–102

Hamilton, W. D., 50, 70

Harms, W., 8

Hawk-Dove game, 51, 52, 157–159

Herrnstein, R., 12, 127

Hofbauer, J., 60–61, 64, 66–67

Hojman, D., 174

Holland, J., 87

homeostasis, 152–153

honeybee signals, 28–29

Hoppe urn, 124–130

Hume, D., 21, 144

Huttegger, S., 64, 66–67,

69, 167

imitation, 55

information, 33–47

information flow, 45–47

information processing, 138–143

informational content, 40–42

intentionality, 42

invention of signals, 118–135

Jackson, M., 171, 176

Kant, I., 72, 80–82

Kirby, S. 146

Kosfeld, M., 173

Krakauer, D., 142, 145–146

Kula ring, 161–163, 168–169

Kullback, S., 1, 8, 36

Kullback-Leibler distance,

36–39, 42

Lachmann, M., 106, 109–110, 113

Law of Effect, 83–84

Law of Practice, 85

leader-follower, 156–160

learning to network, 161–176
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